Мобильные уст-ва        15.04.2024   

Подробнее об особенностях микроархитектуры AMD Zen. Презентация высокопроизводительной микроархитектуры Zen, или как AMD испортила праздник на улице Intel Прогнозирование, декодирование, очереди и выполнение

Новая процессорная архитектура Zen компании AMD имеет множество отличий от предыдущей архитектуры. О некоторых особенностях процессоров Zen мы уже писали, но изменения коснулись большинства составляющих процессоров, и в этом материале мы достаточно подробно разберём некоторые "тонкости" новой архитектуры, основываясь на материале, подготовленном нашими коллегами из AnandTech .

Значительным отличием от предыдущих архитектур стало появление кэш микроопераций (micro-op cache). Архитектура Bulldozer не предусматривала данный кэш, вместо чего детали для реализации часто используемых микроопераций извлекались из других кэшей. Intel использует подобную кэш-память уже на протяжении нескольких поколений процессоров, и появление этого кэша в процессорах AMD сулит им лишь увеличение скорости работы. К сожалению, объём кэша микроопераций пока что не уточняется, но говорится что он "большой".

Нажмите для увеличения

AMD не стала распространяться о механизмах работы декодера, уточнив лишь, что процессоры Zen получат "усовершенствование прогнозирования ветвлений" (branch prediction), а также что сами процессоры смогут декодировать четыре инструкции за такт, загружая их из очереди операций. Эта очередь с помощью кэша микроопераций, сможет загружать в планировщик 6 операций за цикл. Возможна будет загрузка и большего числа операций за цикл, если декодер сможет подать команду, которая потом разделится на две микрокоманды. Очередь микроопераций сможет подавать отдельно операции с целыми числами (INT) и с числами с плавающей запятой (FP). То есть AMD будет использовать отдельные планировщики, тогда как Intel использует общий INT/FP планировщик.

Целочисленная часть (INT) отвечает за работу с операциями в арифметико-логических устройствах (ALU), а также с инструкциями загрузки и сохранения в блоках генерации адреса (AGU). AGU сможет выполнять две загрузки по 16 Байт и одно сохранение на 16 Байт за цикл, используя 32 Кбайт 8-канального множественно-ассоциативного кэша перового уровня (L1) с обратной записью. Процессоры предыдущего поколения использовали кэш со сквозной записью, который являлся причиной значительных задержек при обработке частей кода. Также AMD утверждает, что операции загрузки/сохранения будут иметь значительно меньшее время ожидания в пределах кэшей, по сравнению с предшественниками.

FP-часть включает по два умножителя (MUL) и сумматора (ADD), которые обеспечат одновременную обработку двух команд умножения-сложения с однократным округлением (FMAC), и одной 256-битной AVX-команды за цикл. Сочетание частей INT и FP указывает, что AMD создала в Zen "большие" ядра и будет использовать много параллельных вычислений на уровне команд. Насколько хорошо это всё покажет себя на практике, зависит от кэша и буферов восстановления последовательности, ибо по буферам пока что нет точных данных.

Устройство кэш-памяти также претерпело изменения в архитектуре Zen. Объём и ассоциативность кэша данных первого уровня (L1-D) по сравнению с архитектурой Bulldozer были удвоены. Кэш инструкций первого уровня (L1-I) в новой архитектуре не разделён между двумя ядрами, и у него удвоена ассоциативность, что снижает количество промахов. Также AMD заявляет, что были уменьшены задержки и у кэша L1-D, и у L1-I.

На каждое ядро приходится по 512 Кбайт кэша второго уровня (L2) и он имеет 8-канальную (8-way) ассоциативность, что вдвое больше по сравнению с процессорами Intel Skylake (256 Кбайт/ядро и 4 канала). Что касается кэш-памяти третьего уровня (L3), то здесь возникла некоторая неопределённость. На слайде чётко указано, что объём кэша L3 равен 8 Мбайт, но не уточняется, на сколько ядер рассчитан этот кэш. По неофициальным данным 8-ядерные процессоры Zen получат по два набора кэша L3 по 8 Мбайт, предназначенные для каждой четвёрки ядер. То есть на одно ядро будет приходиться 2 Мбайт 16-канального L3-кэша, но в процессоре фактически не будет общего LLC-кэша, как это реализовано у Intel. Потенциально это может повысить производительность отдельного потока, но не приведёт ли это к снижению многопоточной производительности. Отметим, что AMD обещает пятикратный рост пропускной способности кэшей по сравнению с предыдущими архитектурами.

Также в новой архитектуре AMD плотно занялась вопросом энергопотребления. Сообщается, что в первую очередь достаточно низкое энергопотребление у процессоров Zen обеспечит использования 14-нм техпроцесса FinFET. Кроме того, для уменьшения энергопотребления и улучшения эффективности работы использованы некоторые методы и технологии (доработанные и улучшенные), зарекомендовавшие в процессорах Carrizo и Bristol Ridge для ноутбуков.

Нажмите для увеличения

Разработчики AMD отмечают, что снижению энергопотребления способствует агрессивный Clock gating (запрет подачи тактовых сигналов на неиспользуемые части процессора), кэш перового уровня с обратной записью, использование "большого" объёма кэша микроопераций и другие новшества архитектуры.

Каждое ядро процессора Zen, как давно известно, будет поддерживать два потока или одновременную многопоточность (Simultaneous multithreading или SMT). Главная сложность в реализации данной технологии заключается в том, что потоки не должны блокировать друг друга, загружая весь кэш и буферы. Именно здесь и пригодится собственный для каждого ядра кэш L2, разделение блоков INT и FP, и другие особенности позволят разделить нагрузку равномерно, не создавая конфликта между потоками.

В 2017 году компания AMD представила процессоры Ryzen с новой микроархитектурой Zen. Сегодня редакция сайт детально разберет микроархитектуру Zen, проследив как изменились задержка и пропуск инструкций с K10.

Помимо привычных способов повышения производительности процессора (повышение тактовой частоты, увеличение ширины исполнительного тракта, расширение разрядности ИУ и векторизация инструкций), существует неочевидный способ - снижение таймингов инструкций, то есть сокращение времени выполнения инструкций. Например, снижение времени выполнения операции деления вдвое будет условно равно удвоению тактовой частоты процессора при выполнении деления (с большим количеством допущений). Таким образом, снижение таймингов выполнения инструкций может быть вполне действенным способом, хоть и весьма ограниченным и специфичным (так как для повышения быстройдествия всего процессора необходимо снизить тайминги всех инструкций, тогда как в реальности обычно происходит снижение таймингов лишь определенных инструкциий, что ускоряет процессор только в узком круге задач).
Всего существует два наиболее важных тайминга: задержка (latency) и пропуск (reciprocal throughput). Где задержка выражается в тактах, которые необходимы для выполнения инструкции, а пропуск - количество тактов, которые необходимо пропустить для выполнения следующей инструкции в данном ИУ. Сравним тайминги некоторых инструкций для K10, Bulldozer и Zen, используя справочные данные Agner Fog .

Таблицы будут построены следующим образом: в колонке «Инструкция» будет указана инструкция и операнды (m, m32, m64, m128, m256 - память; r, r32, r64 - РОН; mm - регистры MMX; xmm - регистры SSE; ymm - регистры AVX); в колонках K10, Bulldozer и Zen будут указаны непосредственно тайминги в тактах для данных микроархитектур по схеме «задержка (пропуск)».

Инструкции X86

Инструкция

MOV: перессылка данных из памяти в регистры у Zen на уровне K10 - 3 такта, в то время как у Bulldozer - 4 такта.
XCHG: обмен данными между регистрами у Zen «бесплатный» (с пропуском в 0.33 такта), в то время как у K10 и Bulldozer 2 и 1 такта соответственно. Обмен данными между регистром и памятью у Zen больше, чем у K10 - 30 тактов против 21, но меньше, чем у Bulldozer - 50.
PUSH: для помещения числа в стек всем участникам требуется 1 такт.
POP: извлечение числа из вершины стека у Zen происходит за полтакта, в то время как раньше это требовало 1 такт.
ADD: операция сложения чисел у K10, Bulldozer и Zen требует 1 такт, но необходимо отметить, что у K10 пропуск 1/3 такта, Bulldozer - 1/2, а у Zen - 1/4 такта.
Аналогичная ситуация и с вычитанием (SUB), изменением знака числа (NEG), инкрементом (INC), декрементом (DEC), логическим И (AND), логическим ИЛИ (OR), логическим исключающим ИЛИ (XOR), инверсией битов (NOT).
MUL: беззнаковое умножение на Zen стало вдвое быстрее, чем на Bulldozer - 3 такта против 6.
IMUL: умножение на Zen требует всего 3 такта, в то время как на Bulldozer - 6, а на K10 - 4.
DIV: деление беззнаковых чисел также ускорилось: Zen требует 14-46 тактов; Bulldozer - 16-75; K10 - 15-78.
IDIV: операция деления существенно ускорилась в Zen - 14-47 тактов против 22-79 у Bulldozer.
Подводя промежуточный итог, основные инструкции из набора Х86 стали выполняться на Zen быстрее, чем на предшественниках, то есть Zen даже на одинаковой частоте с предшественниками будет показывать большую производительность (при преобладании представленных инструкций в коде).

Инструкции X87

На сегодняшний день набор инструкций Х87 почти не используется в современных программах, а в процессорах он оставлен для совместивости (тот самый «+» архитектуры х86). Данный набор инструкций уже давно не разивается - не добавляются ни новые инструкции, ни регистры.

Инструкция

FLD: загрузка вещественного числа в стек в Zen стала быстрее - 1 такт против 2 тактов, но пропуск увеличился - в K10 и Bulldozer пропуск равнялся 0,5 такта, а в Zen - 1 такт.
FST: с копированием вещественного числа из стека ситуация аналогичная FLD.
FILD: загрузка целого числа в стек в Zen стала быстрее, чем в Bulldozer - 8 тактов против 12, но медленнее, чем в K10 (6 тактов).
FIST: с копированием целого числа из стека ситуация аналогичная FILD.
FISTP: со считыванием целого числа из стека ситуация аналогичная FILD.
FADD: сложение вещественных чисел в Zen происходит за 5 тактов, тогда как в Bulldozer - 5-6, а в K10 - 4.
FSUB: с вычитанием вещественных чисел ситуация аналогичная FADD.
FMUL: с умножением вещественных чисел ситуация аналогичная FADD.
FDIV: деление вещественных чисел действительно стало быстрее - как по задержке, так и по пропуску: Zen выполняет операцию за 8-15 тактов, а Bulldozer - 10-42 и K10 - 31.
FSQRT: извлечение квадратного корня также ускорилось: Zen выполняет операцию за 8-21 тактов, а Bulldozer - 10-53 и K10 - 35.
FXTRACT: извлечение экспоненты и мантиссы у Zen стало медленнее, чем в Bulldozer - увеличился пропуск на 2 такта, при сохранении задержки на прежнем уровне в 10 тактов.
FCOS: вычисление косинуса в Zen происходит быстрее, чем в Bulldozer - 50-115 тактов против 160.
FSIN: с вычислением синуса ситуация аналогичная FCOS.
Как отмечалось выше, набор инструкций Х87 не развивается и сохраняется для совместимости - это видно по времени исполнения инструкций в Zen, где скорость выполнения многих инструкций хоть и выше, чем в Bulldozer, но ниже, чем в K10, который вышел в 2007 году. Из рассмотренных инструкций существенное ускорение получили только деление вещественных чисел FDIV и извлечение квадратного корня FSQRT.

Инструкции MMX

Набор инструкций MMX был анонсирован 1997 году и предложил восемь 64-битных регистров mm и 57 инструкций. На сегодняшний день данный набор инструкций устарел и не развивается - оставлен в современных процессорах для совместимости.

Инструкция

MOVD: перессылка данных в Zen в зависимости от операндов стала либо быстрее, либо осталась на уровне K10, например: пересылка из РОН в регистры mm в Zen осуществляется за 3 такта, тогда как в K10 - за 6 тактов.
MOVQ: пересылка учетверенных слов между регистрами mm в Zen вдвое быстрее, чем в K10 - 1 такт против 2 (аналогично и пропуск - 0.25 такта против 0.5).

С логическим ИЛИ (POR), логическим И (PAND), побитовым логическим НЕ (PANDN) ситуация аналогичная PXOR.
PMADDWD: умножение четырех слов в Zen происходит с той же скоростью, что и в K10 (но быстрее, чем в Bulldozer).
PCMPEQB: проверка равенства байтов в Zen требует 1 такт, а в K10 и Bulldozer - 2 такта.
Как можно заметить, из рассмотренных инструкций значительная часть стала выполняться быстрее в Zen, чем у предшественников.

Инструкции SSE

Наборы инструкций SSE (SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2) получили широкое распространение и до последнего времени (до появления AVX) активно развивались. Данные наборы инструкций решили основные недостатки MMX (работа только с целыми числами и невозможность параллельной работы с MMX и X87) и предоставили восемь (в последствии 16) 128-битных регистров. Большое количество инструкций (около 300), 128-битные регистры, работа с вещественными числами и удобство работы (по сравнению со стеком в Х87) позволили отказаться от MMX и Х87. Рассматротрим некоторые инструкции из наборов SSE.

Инструкция

MOVD: перессылка данных в Zen в зависимости от операндов стала либо быстрее, либо осталась на уровне K10, например, пересылка из РОН в регистры xmm в Zen осуществляется за 3 такта, тогда как в K10 - за 6 тактов.
MOVQ: пересылка учетверенных слов между регистрами xmm в Zen в 2,5 раза быстрее, чем в K10 - 1 такт против 2.5.
PXOR: побитовое логическое исключающее ИЛИ в Zen осуществляется за 1 такт против 2 в K10.
ADDPS: параллельное сложение четырех пар чисел с плавающей точкой в Zen происходит за 3 такта, тогда как в K10 - 4, а в Bulldozer - 5-6.
Аналогично и с инструкциями сложения вещественных чисел (ADDSS), параллельного вычитания вещественных чисел (SUBPS) и параллельного умножения вещественных чисел (MULPS и MULSS).
DIVPS: параллельное деление вещественных чисел в Zen стало существенно быстрее, чем в K10 - 10 тактов против 18 (аналогично и с пропуском).
SQRTPS: извлечение квадратных корней из четырех чисел требует 9-10 тактов у Zen, в то время как у K10 - 21 такт, а у Bulldozer - 14-15.
ANDPS: операция побитового логического И в Zen осуществляется за 1 такт, а в в K10 и Bulldozer - за 2 такта.
Аналогично и с операциями побитового логического ИЛИ (ORPS) и побитового логического исключающего ИЛИ (XORPS).
Инструкции AVX Наша Редакция не включила по причине того, что они отсутствуют в K10, а следовательно, не получится проследить развитие микроархитектур.

Заключение

Как можно заметить, компания AMD основательно поработала над микроархитектурой Zen, изменив не только концепцию построения ядра, количество ИУ, декодеров и прочее, но и также сократила тайминги выполнения многих инструкций, что также положительно скажется на производительности в различных приложениях. При этом важно понимать, что «ускорились» далеко не все инструкции, так например, если классические инструкции Х86 в большей своей мере (из рассмотренных) стали выполняться в Zen быстрее по сравнению с предшественниками, то инструкции Х87 практически не получили какого-либо ускорения (что еще раз говорит о том, что набор инструкций Х87 устарел, хотя и остается необходимым для совместимости). Векторные инструкции (MMX и SSE) также стали выполняться быстрее. Таким образом, AMD не просто «скопировала» части K10 и Bulldozer в Zen, а существенно переработала ИУ, сделав их быстрее (интересно будет сравнить по таймингам Intel и AMD).

Остальные материалы по микроархитектуре Zen собраны .

Advanced Micro Devices в среду подтвердила, что выходящие в следующем году микропроцессоры будут базироваться на новейшей микроархитектуре Zen. Компания пообещала серьёзное увеличение быстродействия новых микросхем по сравнению с существующими, а также сообщила, что её инженеры уже работают над улучшенной версией технологии Zen, архитектурой под названием Zen+.

Марк Пэйпермастер (Mark Papermaster), технический директор AMD, рассказал финансовым аналитикам, что процессорные ядра Zen будут исполнять на 40 % больше инструкций за такт (instructions per clock, IPC) по сравнению с ядрами Excavator. По сути, это означает, что центральные процессоры AMD следующего поколения будут на 40 % быстрее предшественников при одинаковом количестве ядер и тактовой частое. Согласно данным AMD, микросхемы на основе ядер Zen+ покажут ещё более впечатляющую производительность на такт, что означает дальнейшее серьёзное улучшение на микроархитектурном уровне.

Ядра Excavator являются вершиной развития микроархитектуры Bulldozer, обещавшей революцию в области построения многоядерных процессоров в 2010–2011 годах, но так и не сумевшей стать достойным конкурентом современным микроархитектурам корпорации Intel. Одной из причин фактического фиаско Bulldozer принято считать «модульный» дизайн процессорных ядер (неформально называемый clustered multi-thread (CMT) по аналогии с clustered integer-core, разработанной DEC в 1996 году для RISC-процессора Alpha 21264. Поскольку каждый двухъядерный модуль Bulldozer включает в себя два блока исполнения целочисленных операций (с сопутствующей логикой), но один блок исполнения операций с плавающей запятой (а также делит между целочисленными ядрами блок выборки инструкций, декодер инструкций, а также кеш второго уровня), в случае с операциями с плавающей запятой он ведёт себя как не очень эффективный одноядерный чип.

Микроархитектура Zen обещает стать противоположностью Bulldozer. Каждое ядро Zen будет включать в себя шесть блоков исполнения целочисленных операций, два 256-разрядных блока исполнения операций с плавающей запятой, собственные декодер инструкций, блок выборки инструкций, блок предсказания переходов, собственную кеш-память и т.д.

Кроме того, подобно процессорам Intel (начиная с Pentium 4), новые процессоры AMD будут поддерживать технологию одновременной многопоточности (simultaneous multithreading, SMT). Применение SMT позволит новым ядрам исполнять инструкции из нескольких независимых потоков на различных функциональных модулях ядра Zen за один такт, тем самым увеличивая пиковую производительность.

Согласно AMD, микроархитектура Zen будет обладать инклюзивной многоуровневой подсистемой кеш-памяти, заточенной под минимальные задержки и максимальную пропускную способность. Замена эксклюзивной подсистемы кеш-памяти (каждый уровень хранит уникальную информацию) на инклюзивную (большие по объёму кеши нижних уровней могут хранить копии содержимого меньших по объёму кешей верхнего уровня) происходит фактически впервые в истории процессоров AMD. Начиная с чипа K6 компания применяла исключительно эксклюзивную иерархию кешей.

Увеличение исполнения инструкций за такт на 40 % по сравнению с Excavator не означает, что процессоры на базе Zen будут на 40 % быстрее существующих микросхем AMD FX или A10. Поскольку новые чипы могут работать на более высоких тактовых частотах, вполне возможно, что они будут значительно быстрее современных APU и CPU разработки AMD. Напротив, если тактовые частоты новинок будут низкими, новая продукция AMD сможет показать лишь умеренный прирост производительности по сравнению с сегодняшними решениями.

Как и ожидалось, микропроцессоры на базе микроархитектуры Zen - такие как Summit Ridge, Bristol Ridge и Basilisk - будут производиться по технологии 14 нм с применением транзисторов с вертикально расположенным затвором (fin-shaped field effect transistor, FinFET) на фабрике компании GlobalFoundries. Ожидается, что для изготовления новых чипов будет применена наиболее совершенная версия 14-нм техпроцесса - 14LPP (14nm low-power plus).

Принимая во внимание крайне медленное развитие процессорных микроархитектур в последние годы, 40-% прирост производительности за такт впечатляет. Тем не менее, многое будет зависеть не только от самой микроархитектуры, но и от практической реализации процессоров, а также их тактовых частот. При благоприятном для AMD стечении обстоятельств, очень может быть, что будущие процессоры FX будут в состоянии конкурировать с наиболее мощными микросхемами Intel Core i7 во второй половине следующего года.

Как вы уже поняли, это был первоапрельский розыгрыш, но мы очень надеемся, что AMD сдержит слово и результаты финального образца не будут сильно отличаться от указанных в обзоре, ведь все слайды аутентичные, то есть AMD действительно обещала 40% IPS для AMD Zen в сравнении с предыдущим поколением.

Наверняка многие знают, что в рамках крупных выставок проходят закрытые презентации определенных продуктов, куда пускают далеко не всех гостей и только по приглашениям. Одну из них на CeBIT 2016 организовала компания AMD, продемонстрировав ключевым партнерам и инвесторам свои новые продукты. Как нам сообщили, одной из изюминок этой закрытой презентации стал инженерный образец нового десктопного процессора с 14-нм микроархитектурой . Надеемся, в рамках грядущей Computex 2016 у AMD точно по плану будет возможность продемонстрировать и полноценный финальный образец.

Поэтому когда нам предложили отложить все свои текущие тесты и на пару часов получить в распоряжение инженерный образец процессора AMD Zen для тестирования (хотя и с рядом ограничений), то мы ни минуты не колебались с ответом - ведь случай поистине уникальный. Да и ограничения оказались достаточно мягкими: не показывать обратную сторону самого процессора и используемую материнскую плату, а также не пробовать проводить разгон. В остальном же никаких запретов по используемым бенчмаркам не было.

Традиционно обзор процессора мы начинаем с его спецификации и краткого анализа инноваций, если речь идет о новом поколении. В данном случае таблица спецификации будет состоять лишь из сообщенных нам сведений, а обзор микроархитектуры - с тех крох информации, которую мы нашли в интернете, ведь красочная и содержательная презентация по AMD Zen еще не готова у самой компании AMD. Итак, начинаем.

Спецификация:

Инженерный образец AMD Zen

Сегмент рынка

Десктопные системы

Процессорный разъем

Техпроцесс производства, нм

Микроархитектура

Количество физических ядер / потоков

Номинальная тактовая частота, МГц

Кэш-память L1

Неизвестно

Кэш-память L2, КБ

Кэш-память L3, МБ

Поддерживаемая оперативная память

DDR4-2400 МГц

Показатель TDP, Вт

SMT vs СMT: возвращение к классике

Если проследить за развитием ситуации на рынке традиционных процессоров за прошедшие 12 лет, то можно увидеть, что переломный момент наступил во втором квартале 2006 года. По результатам первого рыночная доля AMD поднялась до 48,4%, а Intel - опустилась до 51,6%. Но затем Intel представила свою успешную и знаменитую микроархитектуру Intel Core, преемники которой и по сей день позволяют ей доминировать на рынке традиционных компьютерных систем. У AMD в то время была довольно хорошая, но все же недостаточно конкурентная микроархитектура AMD K8. В сентябре 2007 года вышла микроархитектура AMD K10, но и она не помогла компании AMD отвоевать ранее отданные позиции. Тем не менее в недрах уже кипела работа над обновлением - AMD Bulldozer, которая должна была ознаменовать переход на качественно новый уровень и стать достойным ответом для Intel Westmere и будущей Intel Sandy Bridge. Презентация платформы AMD Scorpius и первых процессоров линейки состоялась в октябре 2011 года. Но уже первые тесты были сущим разочарованием для публики - они не только не принесли существенного прироста производительности, но и в некоторых бенчмарках даже немного проигрывали предыдущему поколению ЦП компании AMD. Что уже говорить о новых процессорах Intel.

Ключевую роль в таком фиаско сыграл переход к технологии CMT (Clustered Multi-Thread). Не вдаваясь в глубокий анализ, мы лишь кратко напомним, что вместе с микроархитектурой AMD Bulldozer было введено понятие процессорного модуля, который объединяет в себе два блока целочисленных вычислений и один блок вещественных вычислений, использующий технологию SMT (Simultaneous Multithreading) для одновременной обработки двух потоков. То есть с точки зрения целочисленных вычислений - в одном модуле присутствует два физических процессорных ядра, а с точки зрения вещественных - одно физическое ядро и два виртуальных. В свою очередь Intel использует исключительно SMT-подход: есть полноценное физическое ядро с необходимым количеством блоков целочисленных и вещественных вычислений, а уже к нему применяется технология SMT для параллельной обработки двух потоков.

Идея AMD была неплохая, но компания упустила из виду очень существенный момент - необходимость оптимизации программного кода конкретных приложений под многопоточную модульную систему. Ведь в 2011 года большинство программ работали в однопоточном режиме, поэтому для них важнее было наличие в процессоре одного полноценного физического ядра, чем четырех модулей. В последствии AMD тесно сотрудничала с Microsoft для оптимизации программного кода ОС семейства Windows и с другими разработчиками для активной интеграции идеи параллельных вычислений, но на оптимизацию программного кода нужны время и деньги, а AMD теряла покупателей и финансовые ресурсы.

Осознав масштабы ситуации, руководство компании решило создавать полностью новую микроархитектуру. Подобный процесс занимает несколько лет, в течение которых AMD могла лишь немного улучшать концепцию AMD Bulldozer. На пост ведущего архитектора был приглашен Джим Келлер (Jim Keller) - очень авторитетный и уважаемый в индустрии специалист. Именно он был причастен к созданию микроархитектуры AMD K7 и работал на должности ведущего архитектора при создании AMD K8, которая смогла максимально приблизить AMD к Intel в первом квартале 2006 года. После завершения работы над AMD K8 Джим Келлер присоединился к Apple, и уже под его руководством вышли легендарные чипы Apple A4 и Apple A5.

С 2012 по 2015 годы Джим Келлер с командой инженеров трудился над созданием микроархитектуры AMD Zen, которая лишь во второй половине 2015 года была анонсирована широкой публике. Первое, на чем было акцентировано внимание при анонсе, − отказ от CMT и переход к полноценной SMT. Это означает, что в AMD Zen будут использоваться отдельные физические ядра с необходимым набором всех структурных блоков: 4 ALU для целочисленных вычислений, 4 FPU со 128-битной шиной (объединены в два 256-битных модуля FMAC) для вещественных вычислений и 4 декодера. А благодаря SMT-подходу каждое ядро сможет параллельно обрабатывать два потока данных (аналогично технологии Intel Hyper-Threading). Максимальное количество физических ядер для десктопных процессоров достигнет 8-ми, а для серверных - 32-х.

Из неофициальных источников также известно, что каждое ядро использует 512 КБ кэш-памяти L2, а каждые 4 ядра делят между собой общие 8 МБ кэш-памяти L3. Также оговаривалась оптимизация микроархитектуры AMD Zen под популярные современные компиляторы, то есть новые процессоры уже не потребуют какой-либо оптимизации программного кода со стороны разработчиков, а сразу же могут предложить оптимальный уровень производительности. В результате такой важный показатель, как IPS (Instructions per Clock) должен возрасти на 40%. Интересно, сможем ли мы получить аналогичный прирост?

От теории к практике

А теперь давайте перейдем к рассмотрению тестового образца 14-нм процессора с микроархитектурой AMD Zen. На момент его рассмотрения утилита CPU-Z официально не поддерживала данных решений, поэтому для анализа данных мы использовали AIDA64, в которую поддержку AMD Zen добавили с версии .

Номинальная частота инженерного образца оказалась на уровне 3,3 ГГц. Вполне возможно, что в финальной версии частота немного увеличится (в пределах 100 МГц), но более существенного прироста ждать не стоит - все же 8 ядер и 16 потоков не могут работать на более высоких скоростях, сохраняя при этом 95-ваттный тепловой пакет. Кстати, именно использование энергоэффективного 14-нм техпроцесса FinFET LPP позволило достичь таких показателей. Для контраста вспомним, что у 22-нм 8-ядерного процессора базовая частота составляет 3,0 ГГц, а показатель TDP - 140 Вт.

Для охлаждения инженерного образца AMD Zen мы использовали кулер . Который способен справиться со 125-ваттными процессорами. Как видим, температура держалась на уровне 57°С. Критическое значение этого параметра для AMD Zen нам неизвестно, но сам процессор работал стабильно, без каких-либо ошибок.

Точную структуру кэш-памяти установить не удалось, поскольку CPU-Z пока еще не знает о существовании AMD Zen. Поэтому повторимся, что согласно предварительным данным, мы имеем 512 КБ кэш-памяти L2 на ядро и 8 МБ L3 на каждых четыре процессорных ядра. То есть общий объем кэша L3 достигает 16 МБ. Если продолжить сравнение с тем же Intel Core i7-5960X Extreme Edition, то видим двойной прирост кэш-памяти L2 (512 КБ против 256 КБ), но отставание по объему L3 (16 МБ против 20 МБ).

Встроенный контроллер оперативной памяти поддерживает работу с модулями стандарта DDR4-2400 МГц. Была информация, что в разгоне частота памяти может достигать DDR4-2933 МГц, но нам было запрещено проверять подобную теорию.

Интегрированной графики инженерный образец AMD Zen лишен. Не будет ее и в финальной версии. Однако уже в следующем году новое поколение APU обещают перевести на 14-нм микроархитектуру AMD Zen, добавив 14-нм iGPU серии AMD Polaris.

Тестирование

При тестировании использовался Стенд для тестирования Процессоров №2

Материнские платы (AMD) ASUS F1A75-V PRO (AMD A75, Socket FM1, DDR3, ATX), GIGABYTE GA-F2A75-D3H (AMD A75, Socket FM2, DDR3, ATX), ASUS SABERTOOTH 990FX (AMD 990FX, Socket AM3+, DDR3, ATX)
Материнские платы (AMD) ASUS SABERTOOTH 990FX R2.0 (AMD 990FX, Socket AM3+, DDR3, ATX), ASRock Fatal1ty FM2A88X+ Killer (AMD A88X, Socket FM2+, DDR3, ATX)
Материнские платы (Intel) ASUS P8Z77-V PRO/THUNDERBOLT (Intel Z77, Socket LGA1155, DDR3, ATX), ASUS P9X79 PRO (Intel X79, Socket LGA2011, DDR3, ATX), ASRock Z87M OC Formula (Intel Z87, Socket LGA1150, DDR3, mATX)
Материнские платы (Intel) ASUS MAXIMUS VIII RANGER (Intel Z170, Socket LGA1151, DDR4, ATX) / ASRock Fatal1ty Z97X Killer (Intel Z97, Socket LGA1150, DDR3, mATX), ASUS RAMPAGE V EXTREME (Intel X99, Socket LGA2011-v3, DDR4, E-ATX)
Кулеры Scythe Mugen 3 (Socket LGA1150/1155/1366, AMD Socket AM3+/FM1/ FM2/FM2+), ZALMAN CNPS12X (Socket LGA2011), Noctua NH-U14S (LGA2011-3)
Оперативная память 2 х 4 ГБ DDR3-2400 TwinMOS TwiSTER 9DHCGN4B-HAWP, 4 x 4 ГБ DDR4-3000 Kingston HyperX Predator HX430C15PBK4/16 (Socket LGA2011-v3)
Видеокарта AMD Radeon HD 7970 3 ГБ GDDR5, ASUS GeForce GTX 980 STRIX OC 4 GB GDDR5 (GPU-1178 МГц / RAM-1279 МГц)
Жесткий диск Western Digital Caviar Blue WD10EALX (1 ТБ, SATA 6 Гбит/с, NCQ), Seagate Enterprise Capacity 3.5 HDD v4 (ST6000NM0024, 6 ТБ, SATA 6 Гбит/с)
Блок питания Seasonic X-660, 660 Вт, Active PFC, 80 PLUS Gold, 120 мм fan
Операционная система Microsoft Windows 8.1 64-bit

Выберите с чем хотите сравнить AMD Zen Eng Sample
AMD Athlon A12-9800 Boost OFF AMD Athlon A12-9800 Boost ON AMD A10-6790K Turbo core OFF AMD A10-6790K Turbo core ON AMD A10-7800 Turbo Core OFF AMD A10-7800 Turbo Core ON AMD A10-7800 Turbo Core ON, TDP 45W AMD A10-7850K Turbo Core OFF AMD A10-7850K Turbo Core ON AMD A10-7870K Turbo Core OFF AMD A10-7870K Turbo Core ON AMD A4-4000 Turbo OFF AMD A4-4000 Turbo ON AMD A4-6300 Turbo OFF AMD A4-6300 Turbo ON AMD A4-6320 Turbo core OFF AMD A4-6320 Turbo core ON AMD A4-7300 Turbo OFF AMD A4-7300 Turbo ON AMD A6-6400K Turbo OFF AMD A6-6400K Turbo ON AMD A6-7400K Turbo OFF AMD A6-7400K Turbo ON AMD A6-7400K Turbo ON, TDP 45W AMD A8-6500 Turbo core OFF AMD A8-6500 Turbo core ON AMD A8-6500T Turbo OFF AMD A8-6500T Turbo ON AMD A8-6600K Turbo OFF AMD A8-6600K Turbo ON AMD A8-7600 Turbo core OFF AMD A8-7600 Turbo core ON AMD A8-7600 Turbo core ON, TDP 45W AMD A8-7650K Turbo core OFF AMD A8-7650K Turbo core ON AMD A8-7670K Turbo Core OFF AMD A8-7670K Turbo Core ON AMD APU A10-5700 Turbo Core OFF AMD APU A10-5700 Turbo Core ON AMD APU A10-5800K Turbo Core OFF AMD APU A10-5800K Turbo Core ON AMD APU A10-6800K Turbo Core OFF AMD APU A10-6800K Turbo Core ON AMD APU A10-7700K Turbo Core OFF AMD APU A10-7700K Turbo Core ON AMD APU A8-3850 AMD APU A8-5600K Turbo Core OFF AMD APU A8-5600K Turbo Core ON AMD Athlon 5150 AMD Athlon 5350 AMD Athlon II x4 750K Turbo Core OFF AMD Athlon II x4 750K Turbo Core ON AMD Athlon X2 340X Turbo core OFF AMD Athlon X2 340X Turbo core ON AMD Athlon X2 370K Turbo core OFF AMD Athlon X2 370K Turbo core ON AMD Athlon X4 740 Turbo Core OFF AMD Athlon X4 740 Turbo Core ON AMD Athlon X4 845 Turbo core OFF AMD Athlon X4 845 Turbo core ON AMD Athlon X4 860K Turbo core OFF AMD Athlon X4 860K Turbo core ON AMD Athlon X4 880K Turbo core OFF AMD Athlon X4 880K Turbo core ON AMD Athlon X4 950 Boost OFF AMD Athlon X4 950 Boost ON AMD FX-4100 Turbo Core OFF AMD FX-4130 Turbo Core OFF AMD FX-4130 Turbo Core ON AMD FX-4300 Turbo Core OFF AMD FX-4300 Turbo Core ON AMD FX-4350 Turbo core OFF AMD FX-4350 Turbo core ON AMD FX-6350 Turbo OFF AMD FX-6350 Turbo ON AMD FX-8150 Turbo Core ON AMD FX-8320E Turbo Core OFF AMD FX-8320E Turbo Core ON AMD FX-8350 Turbo Core OFF AMD FX-8350 Turbo Core ON AMD FX-8370 Turbo core OFF AMD FX-8370 Turbo core ON AMD FX-9370 Turbo Core OFF AMD FX-9370 Turbo Core ON AMD Phenom II X3 720 AMD Phenom II X6 1100T Turbo Core ON AMD Ryzen 3 1300X Boost OFF AMD Ryzen 3 1300X Boost ON AMD Ryzen 5 1400 Turbo Core OFF AMD Ryzen 5 1400 Turbo Core ON AMD Ryzen 5 1600 Turbo Core OFF AMD Ryzen 5 1600 Turbo Core ON AMD Ryzen 7 1700X AMD Ryzen Threadripper 1950X AMD Ryzen Threadripper 1950X Game Mode AMD Sempron 2650 AMD Sempron 3850 AMD Sempron 3850 AMD Zen Eng Sample Intel Celeron G1820 Intel Celeron G1830 Intel Celeron G1840 Intel Celeron G3900 Intel Core i3-3220 Intel Core i3-3225 Intel Core i3-3240T Intel Core i3-4130 Intel Core i3-4160 Intel Core i3-6100 Intel Core i3-6300 Intel Core i5-2500K Turbo Boost ON Intel Core i5-3330 Turbo Boost OFF Intel Core i5-3330 Turbo Boost ON Intel Core i5-3470 Turbo Boost OFF Intel Core i5-3470 Turbo Boost ON Intel Core i5-3570K Turbo Boost OFF Intel Core i5-3570K Turbo Boost ON Intel Core i5-3570T Turbo Boost OFF Intel Core i5-3570T Turbo Boost ON Intel Core i5-4460 Turbo Boost OFF Intel Core i5-4460 Turbo Boost ON Intel Core i5-4670K Turbo Boost OFF Intel Core i5-4670K Turbo Boost ON Intel Core i5-4690 Turbo Boost OFF Intel Core i5-4690 Turbo Boost ON Intel Core i5-4690K Turbo Boost OFF Intel Core i5-4690K Turbo Boost ON Intel Core i5-4690T Turbo Boost OFF Intel Core i5-4690T Turbo Boost ON Intel Core i5-6400 Turbo Boost OFF Intel Core i5-6400 Turbo Boost ON Intel Core i5-6500 Turbo Boost OFF Intel Core i5-6500 Turbo Boost ON Intel Core i5-6600K Turbo Boost OFF Intel Core i5-6600K Turbo Boost ON Intel Core i5-7400 Turbo Boost OFF Intel Core i5-7400 Turbo Boost ON Intel Core i5-7600K Turbo Boost OFF Intel Core i5-7600K Turbo Boost ON Intel Core i5-8600K Turbo Boost OFF Intel Core i5-8600K Turbo Boost ON Intel Core i7-3770K Turbo Boost OFF Intel Core i7-3770K Turbo Boost ON Intel Core i7-3930K Turbo Boost OFF Intel Core i7-3930K Turbo Boost ON Intel Core i7-4770K Turbo Boost OFF Intel Core i7-4770K Turbo Boost ON Intel Core i7-4770K Turbo Boost ON new Intel Core i7-4930K Turbo Boost OFF Intel Core i7-4930K Turbo Boost ON Intel Core i7-4960X Turbo Boost OFF Intel Core i7-4960X Turbo Boost ON Intel Core i7-5775C Turbo Boost OFF Intel Core i7-5775C Turbo Boost ON Intel Core i7-5930k Turbo Boost OFF Intel Core i7-5930k Turbo Boost ON Intel Core i7-5960X Turbo Boost OFF Intel Core i7-5960X Turbo Boost ON Intel Core i7-6700 Turbo Boost OFF Intel Core i7-6700 Turbo Boost ON Intel Core i7-6700K Turbo Boost OFF Intel Core i7-6700K Turbo Boost ON Intel Core i7-6850K HT OFF Intel Core i7-6850K Turbo Boost OFF Intel Core i7-6850K Turbo Boost ON Intel Core i7-6900K HT OFF Intel Core i7-6900K Turbo Boost OFF Intel Core i7-6900K Turbo Boost ON Intel Core i7-7700K HT OFF Intel Core i7-7700K Turbo Boost OFF Intel Core i7-7700K Turbo Boost ON Intel Core i7-7820X Turbo Boost OFF Intel Core i7-7820X Turbo Boost ON Intel Core i7-8700K Turbo Boost ON Intel Core i7-8700K Turbo Boost ON Enhanced Performance Intel Pentium G3220 Intel Pentium G3258 Intel Pentium G3460 Intel Pentium G4400 Intel Pentium G4500 Intel Pentium G4560 Intel Pentium G4560, HT OFF Intel Xeon E3-1280 v5 Turbo Boost OFF Intel Xeon E3-1280 v5 Turbo Boost ON
AMD Athlon A12-9800 Boost OFF AMD Athlon A12-9800 Boost ON AMD A10-6790K Turbo core OFF AMD A10-6790K Turbo core ON AMD A10-7800 Turbo Core OFF AMD A10-7800 Turbo Core ON AMD A10-7800 Turbo Core ON, TDP 45W AMD A10-7850K Turbo Core OFF AMD A10-7850K Turbo Core ON AMD A10-7870K Turbo Core OFF AMD A10-7870K Turbo Core ON AMD A4-4000 Turbo OFF AMD A4-4000 Turbo ON AMD A4-6300 Turbo OFF AMD A4-6300 Turbo ON AMD A4-6320 Turbo core OFF AMD A4-6320 Turbo core ON AMD A4-7300 Turbo OFF AMD A4-7300 Turbo ON AMD A6-6400K Turbo OFF AMD A6-6400K Turbo ON AMD A6-7400K Turbo OFF AMD A6-7400K Turbo ON AMD A6-7400K Turbo ON, TDP 45W AMD A8-6500 Turbo core OFF AMD A8-6500 Turbo core ON AMD A8-6500T Turbo OFF AMD A8-6500T Turbo ON AMD A8-6600K Turbo OFF AMD A8-6600K Turbo ON AMD A8-7600 Turbo core OFF AMD A8-7600 Turbo core ON AMD A8-7600 Turbo core ON, TDP 45W AMD A8-7650K Turbo core OFF AMD A8-7650K Turbo core ON AMD A8-7670K Turbo Core OFF AMD A8-7670K Turbo Core ON AMD APU A10-5700 Turbo Core OFF AMD APU A10-5700 Turbo Core ON AMD APU A10-5800K Turbo Core OFF AMD APU A10-5800K Turbo Core ON AMD APU A10-6800K Turbo Core OFF AMD APU A10-6800K Turbo Core ON AMD APU A10-7700K Turbo Core OFF AMD APU A10-7700K Turbo Core ON AMD APU A8-3850 AMD APU A8-5600K Turbo Core OFF AMD APU A8-5600K Turbo Core ON AMD Athlon 5150 AMD Athlon 5350 AMD Athlon II x4 750K Turbo Core OFF AMD Athlon II x4 750K Turbo Core ON AMD Athlon X2 340X Turbo core OFF AMD Athlon X2 340X Turbo core ON AMD Athlon X2 370K Turbo core OFF AMD Athlon X2 370K Turbo core ON AMD Athlon X4 740 Turbo Core OFF AMD Athlon X4 740 Turbo Core ON AMD Athlon X4 845 Turbo core OFF AMD Athlon X4 845 Turbo core ON AMD Athlon X4 860K Turbo core OFF AMD Athlon X4 860K Turbo core ON AMD Athlon X4 880K Turbo core OFF AMD Athlon X4 880K Turbo core ON AMD Athlon X4 950 Boost OFF AMD Athlon X4 950 Boost ON AMD FX-4100 Turbo Core OFF AMD FX-4130 Turbo Core OFF AMD FX-4130 Turbo Core ON AMD FX-4300 Turbo Core OFF AMD FX-4300 Turbo Core ON AMD FX-4350 Turbo core OFF AMD FX-4350 Turbo core ON AMD FX-6350 Turbo OFF AMD FX-6350 Turbo ON AMD FX-8150 Turbo Core ON AMD FX-8320E Turbo Core OFF AMD FX-8320E Turbo Core ON AMD FX-8350 Turbo Core OFF AMD FX-8350 Turbo Core ON AMD FX-8370 Turbo core OFF AMD FX-8370 Turbo core ON AMD FX-9370 Turbo Core OFF AMD FX-9370 Turbo Core ON AMD Phenom II X3 720 AMD Phenom II X6 1100T Turbo Core ON AMD Ryzen 3 1300X Boost OFF AMD Ryzen 3 1300X Boost ON AMD Ryzen 5 1400 Turbo Core OFF AMD Ryzen 5 1400 Turbo Core ON AMD Ryzen 5 1600 Turbo Core OFF AMD Ryzen 5 1600 Turbo Core ON AMD Ryzen 7 1700X AMD Ryzen Threadripper 1950X AMD Ryzen Threadripper 1950X Game Mode AMD Sempron 2650 AMD Sempron 3850 AMD Sempron 3850 AMD Zen Eng Sample Intel Celeron G1820 Intel Celeron G1830 Intel Celeron G1840 Intel Celeron G3900 Intel Core i3-3220 Intel Core i3-3225 Intel Core i3-3240T Intel Core i3-4130 Intel Core i3-4160 Intel Core i3-6100 Intel Core i3-6300 Intel Core i5-2500K Turbo Boost ON Intel Core i5-3330 Turbo Boost OFF Intel Core i5-3330 Turbo Boost ON Intel Core i5-3470 Turbo Boost OFF Intel Core i5-3470 Turbo Boost ON Intel Core i5-3570K Turbo Boost OFF Intel Core i5-3570K Turbo Boost ON Intel Core i5-3570T Turbo Boost OFF Intel Core i5-3570T Turbo Boost ON Intel Core i5-4460 Turbo Boost OFF Intel Core i5-4460 Turbo Boost ON Intel Core i5-4670K Turbo Boost OFF Intel Core i5-4670K Turbo Boost ON Intel Core i5-4690 Turbo Boost OFF Intel Core i5-4690 Turbo Boost ON Intel Core i5-4690K Turbo Boost OFF Intel Core i5-4690K Turbo Boost ON Intel Core i5-4690T Turbo Boost OFF Intel Core i5-4690T Turbo Boost ON Intel Core i5-6400 Turbo Boost OFF Intel Core i5-6400 Turbo Boost ON Intel Core i5-6500 Turbo Boost OFF Intel Core i5-6500 Turbo Boost ON Intel Core i5-6600K Turbo Boost OFF Intel Core i5-6600K Turbo Boost ON Intel Core i5-7400 Turbo Boost OFF Intel Core i5-7400 Turbo Boost ON Intel Core i5-7600K Turbo Boost OFF Intel Core i5-7600K Turbo Boost ON Intel Core i5-8600K Turbo Boost OFF Intel Core i5-8600K Turbo Boost ON Intel Core i7-3770K Turbo Boost OFF Intel Core i7-3770K Turbo Boost ON Intel Core i7-3930K Turbo Boost OFF Intel Core i7-3930K Turbo Boost ON Intel Core i7-4770K Turbo Boost OFF Intel Core i7-4770K Turbo Boost ON Intel Core i7-4770K Turbo Boost ON new Intel Core i7-4930K Turbo Boost OFF Intel Core i7-4930K Turbo Boost ON Intel Core i7-4960X Turbo Boost OFF Intel Core i7-4960X Turbo Boost ON Intel Core i7-5775C Turbo Boost OFF Intel Core i7-5775C Turbo Boost ON Intel Core i7-5930k Turbo Boost OFF Intel Core i7-5930k Turbo Boost ON Intel Core i7-5960X Turbo Boost OFF Intel Core i7-5960X Turbo Boost ON Intel Core i7-6700 Turbo Boost OFF Intel Core i7-6700 Turbo Boost ON Intel Core i7-6700K Turbo Boost OFF Intel Core i7-6700K Turbo Boost ON Intel Core i7-6850K HT OFF Intel Core i7-6850K Turbo Boost OFF Intel Core i7-6850K Turbo Boost ON Intel Core i7-6900K HT OFF Intel Core i7-6900K Turbo Boost OFF Intel Core i7-6900K Turbo Boost ON Intel Core i7-7700K HT OFF Intel Core i7-7700K Turbo Boost OFF Intel Core i7-7700K Turbo Boost ON Intel Core i7-7820X Turbo Boost OFF Intel Core i7-7820X Turbo Boost ON Intel Core i7-8700K Turbo Boost ON Intel Core i7-8700K Turbo Boost ON Enhanced Performance Intel Pentium G3220 Intel Pentium G3258 Intel Pentium G3460 Intel Pentium G4400 Intel Pentium G4500 Intel Pentium G4560 Intel Pentium G4560, HT OFF Intel Xeon E3-1280 v5 Turbo Boost OFF Intel Xeon E3-1280 v5 Turbo Boost ON
AMD Athlon A12-9800 Boost OFF AMD Athlon A12-9800 Boost ON AMD A10-6790K Turbo core OFF AMD A10-6790K Turbo core ON AMD A10-7800 Turbo Core OFF AMD A10-7800 Turbo Core ON AMD A10-7800 Turbo Core ON, TDP 45W AMD A10-7850K Turbo Core OFF AMD A10-7850K Turbo Core ON AMD A10-7870K Turbo Core OFF AMD A10-7870K Turbo Core ON AMD A4-4000 Turbo OFF AMD A4-4000 Turbo ON AMD A4-6300 Turbo OFF AMD A4-6300 Turbo ON AMD A4-6320 Turbo core OFF AMD A4-6320 Turbo core ON AMD A4-7300 Turbo OFF AMD A4-7300 Turbo ON AMD A6-6400K Turbo OFF AMD A6-6400K Turbo ON AMD A6-7400K Turbo OFF AMD A6-7400K Turbo ON AMD A6-7400K Turbo ON, TDP 45W AMD A8-6500 Turbo core OFF AMD A8-6500 Turbo core ON AMD A8-6500T Turbo OFF AMD A8-6500T Turbo ON AMD A8-6600K Turbo OFF AMD A8-6600K Turbo ON AMD A8-7600 Turbo core OFF AMD A8-7600 Turbo core ON AMD A8-7600 Turbo core ON, TDP 45W AMD A8-7650K Turbo core OFF AMD A8-7650K Turbo core ON AMD A8-7670K Turbo Core OFF AMD A8-7670K Turbo Core ON AMD APU A10-5700 Turbo Core OFF AMD APU A10-5700 Turbo Core ON AMD APU A10-5800K Turbo Core OFF AMD APU A10-5800K Turbo Core ON AMD APU A10-6800K Turbo Core OFF AMD APU A10-6800K Turbo Core ON AMD APU A10-7700K Turbo Core OFF AMD APU A10-7700K Turbo Core ON AMD APU A8-3850 AMD APU A8-5600K Turbo Core OFF AMD APU A8-5600K Turbo Core ON AMD Athlon 5150 AMD Athlon 5350 AMD Athlon II x4 750K Turbo Core OFF AMD Athlon II x4 750K Turbo Core ON AMD Athlon X2 340X Turbo core OFF AMD Athlon X2 340X Turbo core ON AMD Athlon X2 370K Turbo core OFF AMD Athlon X2 370K Turbo core ON AMD Athlon X4 740 Turbo Core OFF AMD Athlon X4 740 Turbo Core ON AMD Athlon X4 845 Turbo core OFF AMD Athlon X4 845 Turbo core ON AMD Athlon X4 860K Turbo core OFF AMD Athlon X4 860K Turbo core ON AMD Athlon X4 880K Turbo core OFF AMD Athlon X4 880K Turbo core ON AMD Athlon X4 950 Boost OFF AMD Athlon X4 950 Boost ON AMD FX-4100 Turbo Core OFF AMD FX-4130 Turbo Core OFF AMD FX-4130 Turbo Core ON AMD FX-4300 Turbo Core OFF AMD FX-4300 Turbo Core ON AMD FX-4350 Turbo core OFF AMD FX-4350 Turbo core ON AMD FX-6350 Turbo OFF AMD FX-6350 Turbo ON AMD FX-8150 Turbo Core ON AMD FX-8320E Turbo Core OFF AMD FX-8320E Turbo Core ON AMD FX-8350 Turbo Core OFF AMD FX-8350 Turbo Core ON AMD FX-8370 Turbo core OFF AMD FX-8370 Turbo core ON AMD FX-9370 Turbo Core OFF AMD FX-9370 Turbo Core ON AMD Phenom II X3 720 AMD Phenom II X6 1100T Turbo Core ON AMD Ryzen 3 1300X Boost OFF AMD Ryzen 3 1300X Boost ON AMD Ryzen 5 1400 Turbo Core OFF AMD Ryzen 5 1400 Turbo Core ON AMD Ryzen 5 1600 Turbo Core OFF AMD Ryzen 5 1600 Turbo Core ON AMD Ryzen 7 1700X AMD Ryzen Threadripper 1950X AMD Ryzen Threadripper 1950X Game Mode AMD Sempron 2650 AMD Sempron 3850 AMD Sempron 3850 AMD Zen Eng Sample Intel Celeron G1820 Intel Celeron G1830 Intel Celeron G1840 Intel Celeron G3900 Intel Core i3-3220 Intel Core i3-3225 Intel Core i3-3240T Intel Core i3-4130 Intel Core i3-4160 Intel Core i3-6100 Intel Core i3-6300 Intel Core i5-2500K Turbo Boost ON Intel Core i5-3330 Turbo Boost OFF Intel Core i5-3330 Turbo Boost ON Intel Core i5-3470 Turbo Boost OFF Intel Core i5-3470 Turbo Boost ON Intel Core i5-3570K Turbo Boost OFF Intel Core i5-3570K Turbo Boost ON Intel Core i5-3570T Turbo Boost OFF Intel Core i5-3570T Turbo Boost ON Intel Core i5-4460 Turbo Boost OFF Intel Core i5-4460 Turbo Boost ON Intel Core i5-4670K Turbo Boost OFF Intel Core i5-4670K Turbo Boost ON Intel Core i5-4690 Turbo Boost OFF Intel Core i5-4690 Turbo Boost ON Intel Core i5-4690K Turbo Boost OFF Intel Core i5-4690K Turbo Boost ON Intel Core i5-4690T Turbo Boost OFF Intel Core i5-4690T Turbo Boost ON Intel Core i5-6400 Turbo Boost OFF Intel Core i5-6400 Turbo Boost ON Intel Core i5-6500 Turbo Boost OFF Intel Core i5-6500 Turbo Boost ON Intel Core i5-6600K Turbo Boost OFF Intel Core i5-6600K Turbo Boost ON Intel Core i5-7400 Turbo Boost OFF Intel Core i5-7400 Turbo Boost ON Intel Core i5-7600K Turbo Boost OFF Intel Core i5-7600K Turbo Boost ON Intel Core i5-8600K Turbo Boost OFF Intel Core i5-8600K Turbo Boost ON Intel Core i7-3770K Turbo Boost OFF Intel Core i7-3770K Turbo Boost ON Intel Core i7-3930K Turbo Boost OFF Intel Core i7-3930K Turbo Boost ON Intel Core i7-4770K Turbo Boost OFF Intel Core i7-4770K Turbo Boost ON Intel Core i7-4770K Turbo Boost ON new Intel Core i7-4930K Turbo Boost OFF Intel Core i7-4930K Turbo Boost ON Intel Core i7-4960X Turbo Boost OFF Intel Core i7-4960X Turbo Boost ON Intel Core i7-5775C Turbo Boost OFF Intel Core i7-5775C Turbo Boost ON Intel Core i7-5930k Turbo Boost OFF Intel Core i7-5930k Turbo Boost ON Intel Core i7-5960X Turbo Boost OFF Intel Core i7-5960X Turbo Boost ON Intel Core i7-6700 Turbo Boost OFF Intel Core i7-6700 Turbo Boost ON Intel Core i7-6700K Turbo Boost OFF Intel Core i7-6700K Turbo Boost ON Intel Core i7-6850K HT OFF Intel Core i7-6850K Turbo Boost OFF Intel Core i7-6850K Turbo Boost ON Intel Core i7-6900K HT OFF Intel Core i7-6900K Turbo Boost OFF Intel Core i7-6900K Turbo Boost ON Intel Core i7-7700K HT OFF Intel Core i7-7700K Turbo Boost OFF Intel Core i7-7700K Turbo Boost ON Intel Core i7-7820X Turbo Boost OFF Intel Core i7-7820X Turbo Boost ON Intel Core i7-8700K Turbo Boost ON Intel Core i7-8700K Turbo Boost ON Enhanced Performance Intel Pentium G3220 Intel Pentium G3258 Intel Pentium G3460 Intel Pentium G4400 Intel Pentium G4500 Intel Pentium G4560 Intel Pentium G4560, HT OFF Intel Xeon E3-1280 v5 Turbo Boost OFF Intel Xeon E3-1280 v5 Turbo Boost ON

Честно говоря, мы не были готовы к получению подобных результатов, ведь в последние годы новые поколения процессоров в лучшем случае на 10% - 15% превосходят предыдущие, даже при смене техпроцесса или микроархитектуры. Да, AMD Zen на бумаге выглядят впечатляюще. Да, AMD уже упоминала о 40% приросте в IPC, но несколько последних поколений процессоров AMD приучили нас скептически относиться к официальным данным.

И вот реальность преподносит нам замечательный сюрприз: по факту 8-ядерный отстает в среднем на 39%. В некоторых бенчмарках преимущество инженерного образца AMD Zen доходило и до 60%. Более горячий отстал в среднем на 37%. А ведь мы сравниваем модели с номинальной частотой 4,4 ГГц и 3,3 ГГц!

Еще более приятно нам видеть возродившуюся конкуренцию с компанией Intel: 4-ядерный процессор в среднем отстал на 18%, а флагманский 8-ядерный оказался впереди всего лишь на 4%. Более чем достойные результаты.

Особое внимание хочется уделить энергопотреблению всей тестовой системы. По этому показателю ПК с 8-ядерным AMD Zen вплотную приблизился к Intel Core i7-6700K: разница составляет 13 Вт (148 Вт против 135 Вт). Потребление остальных систем превысило 200 Вт. То есть новинка не только демонстрирует отличный уровень производительности, но и прекрасную энергоэффективность. Переход на 14-нм техпроцесс сполна себя оправдал.

Выводы

Нам остается лишь поздравить Джима Келлера, его команду инженеров и всю компанию AMD с прекрасно выполненной работой. Создание и реализация микроархитектуры заняло практически четыре года, но теперь на рынке появятся по-настоящему производительные процессоры, которым по силам возродить былую конкуренцию, а вместе с ней - и ценовые войны. Да и у компании Intel теперь есть еще один стимул не почивать на лаврах, а активизировать работу над еще более эффективными моделями.

И хотя мы протестировали лишь инженерный образец нового процессора, но и он показал отличную вычислительную мощь: AMD FX-8370 остался позади в среднем на 39%, а Intel Core i7-6700K - на 18%. Триумфатором в схватке с AMD Zen вышел лишь Intel Core i7-5960X Extreme Edition, но и его перевес в среднем на 4% не кажется уж таким высоким, особенно с точки зрения энергоэффективности. Разница в энергопотреблении между тестовыми системами на основе этих ЦП оказалась очень существенной: 148 Вт против 207 Вт. А это в свою очередь снижает требования к процессорному охладителю и блоку питания.

Конечно, остались еще открытыми вопросы разгона и стоимости новых процессоров с микроархитектурой AMD Zen, но мы искренне надеемся, что компания AMD и в этих сферах сохранит свой лояльный подход. Поэтому если в ближайшем будущем вы планируете покупать новую систему, то искренне советуем дождаться выхода AMD Zen во второй половине 2016 года и уже тогда делать взвешенный выбор.

Чего нам ждать от компании в 2017 году?

Некоторое время назад AMD поделилась с широкой общественностью очередной порцией данных о новой микроархитектуре Zen, а также платформе AM4, которая (вкупе с новыми процессорами и APU) со следующего года должна стать основным продуктом компании для десктопного рынка. Понятно, что предварительная информация исчерпывающей не является, однако она достаточно интересна, поскольку позволяет примерно понять, чего следует ждать от новых продуктов (а чего - не стоит). Это и явилось поводом для написания данного материала, посвященного не микроархитектурным тонкостям (безусловно, важным, но далеко не всем), а, скажем так, потребительским характеристикам новой платформы.

Текущие проблемы

Как мы уже писали почти два года назад , последние несколько лет ситуация с настольными платформами AMD выглядела несколько странной. Фактически основные события происходили в области APU (как компания называет процессоры с интегрированной графикой), где с 2011 года сменились две с половиной платформы: FM1, FM2 и совместимая с последней сверху вниз FM2+. Впрочем, все перечисленные решения (даже платформу FM1 , на рынке не слишком задержавшуюся) можно считать современными: высокая степень интеграции позволяет создавать законченные системы, используя буквально пару чипов - собственно процессор (большинство которых снабжено отличными по меркам интегрированных решений GPU) и чипсет. Линейка же чипсетов также соответствует современным требованиям - в плане интеграции функциональных возможностей AMD очень часто опережала Intel, первой снабдив свои микросхемы и встроенной поддержкой USB 3.0, и скоростью в 6 Гбит/с для всех SATA-портов, например. Единственное, что мешало широкой экспансии решений для этой платформы - относительно невысокая производительность и высокое энергопотребление процессорной части APU в сравнении с конкурирующими решениями. Более высокую производительность можно было получить, выбирая решения для платформы АМ3+, по сути восходящей еще к платформам начала века. Да и сами по себе многомодульные процессоры для нее существенно не обновлялись с 2012 года, так что могли продаваться лишь благодаря низким ценам при относительно высокой себестоимости, обусловленной использованием уже порядком устаревшего техпроцесса 32 нм. Последнее в какой-то степени касалось и APU, которые за время существования «перешли» с упомянутых норм лишь на 28 нм, что тоже пиком технологий давно не является - во многом именно это вызывало упомянутые проблемы с энергопотреблением.

Стоит отметить, что такое положение дел компания «нормальным» не считала никогда: унификация платформ изначально планировалась как раз на 2012 год. Однако на практике этого не случилось, так что своеобразное «сидение на двух стульях» продолжается до сих пор. Таким образом, по сути, ныне уже устарели и процессоры, и платформы AMD, так что ситуацию нужно менять радикально. Это компания и планирует сделать.

АМ4: наконец-то единая платформа

AMD полностью подтвердила существующие предположения о характеристиках новой платформы, причем даже «с горкой». В частности, к ключевым особенностям AM4 компания относит следующее:

  • Память типа DDR4
  • Полная поддержка PCIe 3.0
  • USB 3.1 («полноценный», т. е. Gen2 со скоростью до 10 Гбит/с)
  • NVMe и SATA Express

Что касается последнего пункта, то, в принципе, серьезные аппаратные доработки для его реализации не требовались: она возможна и в рамках существующих платформ. В частности, многие производители системных плат даже ассортимент моделей с АМ3+ обновили, предусмотрев для них загрузку с NVMe-накопителей. Более важным для полноценного функционирования NVMe-накопителей на максимальной скорости является поддержка PCIe 3.0, которой в рамках АМ3+ не было вообще, а APU для FM2+ поддерживали лишь 24 линии данного интерфейса, часть которых «уходила» на связь с чипсетом, а 16 могли потребоваться видеокарте. Кроме того, как уже было сказано выше, высокопроизводительных процессоров для FM2+ не существовало, так что платформа давно и прочно обосновалась в бюджетном секторе, где протокол NVMe не слишком актуален (просто потому, что пока все поддерживающие его накопители исключительно «небюджетны»). АМ4 же по планам должна стать решением для всех сегментов рынка, так что для нее это может стать необходимым - особенно учитывая тягу AMD к созданию «долгоживущих» платформ, что весьма ценят многие пользователи. Ровно то же самое относится и к поддержке USB 3.1: пока она необходимостью не является, однако в будущем может пригодиться. Опять же, как уже было сказано выше, предыдущую версию стандарта AMD реализовала в чипсетах на год раньше, чем Intel, так что логично того же ожидать и для новой версии USB.

Освоение DDR4 - это давно ожидавшийся шаг, поскольку производительность интегрированных GPU сильно зависит от пропускной способности памяти. Ранее решать эту проблему приходилось повышением частот DDR3, но такой подход, мягко говоря, не идеален с точки зрения цены и энергопотребления модулей. Собственно, именно поэтому разговоры о внедрении поддержки DDR4 в APU AMD шли еще с 2013 года (тогда высказывалась масса предположений о двух вариантах в ожидающихся Kaveri), но долгое время новые модули памяти были слишком дороги для использования в массовых системах. На данный момент отгрузки DDR4 уже превосходят DDR3, так что цены сравнялись - с тенденцией в пользу DDR4. В общем, пришло время прощаться со старыми стандартами, причем, судя по всему, AMD планирует это сделать более резко, чем Intel - та, напомним, пока полностью от DDR3 не отказывается. С другой стороны, последнее серьезное обновление LGA115x было в прошлом году, а наиболее интересные продукты для АМ4 появятся в следующем, так что такая разница в подходах вполне объяснима.

Bristol Ridge: промежуточное решение

Впрочем, «обкатка» платформы уже практически началась: как и предполагалось, некоторое количество процессоров для нее выпущено прямо сейчас и уже отгружается крупным производителям. Все они по-прежнему относятся к бюджетному сегменту, так что и самый функциональный из чипсетов (Х380) компания пока «зажала», поставляя лишь пару недорогих модификаций - А320 и В350. Тем не менее, на практике многим будет достаточно и их. Чего в них нет, так это поддержки PCIe 3.0 - лишь 4 или 6 линий PCIe 2.0 соответственно. С другой стороны, 10 линий PCIe 3.0 (не считая нужных для связи с чипсетом) поддерживаются самими нынешними процессорами/APU, а наличие в этих APU мощной (для решений такого класса) графики в недорогом компьютере точно оставит процессорные линии PCIe свободными для периферии.

Вообще же, по сути, можно наблюдать унификацию мобильных и настольных решений: APU семейства Bristol Ridge - это наследники уже знакомых нам Carrizo . Кроме упомянутых 10 линий PCIe 3.0 (х8+х1+х1, две последние можно одновременно «отдать» NVMe-накопителю), они сами поддерживают 4 порта USB 3.0 (оно же USB 3.1 Gen1) и 2 порта SATA600. Использование младшего чипсета А320 добавляет к вышеуказанному разъем USB 3.1 (полноскоростной, как уже было отмечено выше), 2 порта USB 3.0, 6 портов USB 2.0, 4 линии PCIe 2.0, 2 порта SATA600 и 1 разъем SATA Express (который можно использовать как пару SATA). В В350 функциональные возможности аналогичны, но добавлен еще 1 порт USB 3.1 и 2 линии PCIe 2.0. Кроме того, по доброй традиции все решения AMD поддерживают создание RAID-массивов уровней 0, 1 и 10.

Как это соотносится с бюджетными предложениями Intel, типа H110 и B150? Для упрощения понимания соберем характеристики платформ в таблицу, добавив к ней и массовый A78 для уходящей с рынка FM2+.

Чипсет AMD A78 AMD A320 AMD B350 Intel H110 Intel B150
Линий PCIe 3.0 (сумм.) 8/16 10 10 16 24
Линий PCIe 2.0 4 4 6 6 0
Портов SATA600 6 до 6 до 6 4 до 6
RAID 0/1/10 да да да нет нет
Портов SATA Express 0 1 1 0 0
Портов USB 3.1 0 1 2 0 0
Портов USB 3.0 4 6 6 4 6
Портов USB 2.0 14 6 6 6 6

Итак, единственное формально слабое место новой платформы - количество линий PCIe 3.0, обеспечиваемых процессором: всего 10 против обычных в массовом сегменте 16. Но это место слабое лишь пока - просто на данный момент других моделей APU нет, но в будущем они появятся. В конце концов, у решений на FM2+ (A78) линий PCIe 3.0 может и вовсе не оказаться - если установить в плату процессор под FM2, каковые поддерживали только PCIe 2.0. А у платформ Intel другая проблема: все процессоры для LGA1151 поддерживают PCIe 3.0 x16, но на платах с бюджетными чипсетами такая конфигурация линий будет единственной - «расщеплять» эти линии по слотам/устройствам не положено. AMD придерживается иной практики, так что в системе с А320 можно, например, «гонять» два NVMe-накопителя на PCIe 3.0 - а в системе с Н110 нельзя (впрочем, PCIe 3.0 x2 по пропускной способности равно PCIe 2.0 х4, но во многих ли недорогих платах на Н110 найдется возможность реализовать хотя бы такой слот?). Насколько это (равно как и поддержка SATA Express или RAID-массивов) востребовано в недорогих системах - вопрос отдельный. Но факт остается фактом: по сути, даже самые младшие варианты новой платформы сравнимы по функциональности со старшими решениями Intel.

Что же касается возможностей подключения внешней периферии, то по общему количеству USB-портов рекордсменом продолжают оставаться чипсеты для FM2+. Но рекорд этот чисто теоретический - на самом деле столько USB 2.0 в конечных решениях просто не бывает востребовано. А вот четырех высокоскоростных USB-портов иногда уже маловато, что «бьет» и по Intel Н110. При этом самый младший чипсет для АМ4 поддерживает семь портов USB 3.0 (один из которых вообще USB 3.1, что пока, как уже было сказано выше, является в основном заделом на будущее, однако на скорости USB 3.0 этот порт можно использовать уже сейчас) - даже больше, чем В150. Возможно, в «двухсотой» серии чипсетов Intel «подрихтует» и младшие модификации, но пока ее нет, а А320 и В350 уже отгружаются производителям.

Новыми красками должна заиграть разработка компактных компьютеров на базе процессоров AMD, поскольку часть функциональных возможностей традиционных чипсетов уже перенесена в собственно процессоры, что в какой-то степени роднит АМ4 не только с FM2+ или АМ3+, но и с АМ1. В АМ1, правда, функциональность SoC была сильно ограниченной, да и возможности ее расширения отсутствовали, но сейчас эта проблема снята. Точнее, она была снята в ноутбучных Carrizo год назад, и нет ничего удивительного в том, что при разработке новой настольной платформы эти достижения были учтены и унаследованы. Что это дает на практике? Например, без каких-либо особых сложностей можно выпускать платы формата Mini-STX с заменяемым процессором, но «сэкономив» на микросхеме чипсета - четырех портов USB 3.0 и пары SATA600 (один из которых в сочетании с PCIe 3.0 x4 разумно отвести под слот M.2) там хватит. Раньше с этим были сложности - теперь нет.

Процессор AMD A12-9800 AMD A12-9800E AMD A10-9700 AMD A10-9700E AMD A8-9600 AMD A6-9500 AMD A6-9500E AMD Athlon X4 950
Технология пр-ва 28 нм
Частота ядра std/max, ГГц 3,8/4,2 3,1/3,8 3,5/3,8 3,1/3,5 3,1/3,4 3,5/3,8 3,0/3,4 3,5/3,8
Кол-во модулей / потоков вычисления 2/4 2/4 2/4 2/4 2/4 1/2 1/2 2/4
Кэш L1 (сумм.), I/D, КБ 192/128 192/128 192/128 192/128 192/128 96/64 96/64 192/128
Кэш L2, КБ 2×1024 2×1024 2×1024 2×1024 2×1024 1×1024 1×1024 2×1024
Оперативная память 2×DDR4-2400
TDP, Вт 65 35 65 35 65 65 35 65
Графика Radeon R7 Radeon R7 Radeon R7 Radeon R7 Radeon R7 Radeon R5 Radeon R5 -
Кол-во ГП 512 512 384 384 384 384 384 -
Частота std/max, МГц 1108 900 1029 847 900 1029 800 -

Но почему при всех этих интересных особенностях мы текущую реализацию платформы склонны считать промежуточным решением? Дело в том, что сильно ограничены существующие сейчас для нее процессоры. AMD, конечно, высоко оценивает APU «седьмого поколения», но то же самое говорилось и про предыдущие модели. А на практике это лишь дальнейшее развитие все той же модульной архитектуры, дебютировавшей еще в 2011 году, и все тот же техпроцесс 28 нм, используемый с 2014 года. Да, как показали наши тесты, процессоры Carrizo нередко оказываются (благодаря оптимизациям) быстрее Kaveri, работающих на более высокой тактовой частоте, а поддержка памяти типа DDR4 должна их еще немного «подстегнуть». Интегрированный GPU и ранее был одним из лучших в своем классе, а с 2015 года получил обновленный блок видеообработки с аппаратной поддержкой VP9 и H.265/HEVC с разрешением до 4К. Все это верно - но тянет лишь на эволюционные изменения, не меняющие принципиально класс решения. Так, единственный на данный момент Athlon X4 для новой платформы, модель с индексом 950, во всем, кроме типа оперативной памяти, идентичен Athlon X4 845 для FM2+, да и другим новым процессорам более-менее близкие аналоги подобрать можно. Поэтому настоящий старт платформы АМ4 ожидается лишь в следующем году - во всяком случае, если планы AMD будут выполнены.

Zen: что нового?

Итак, какие проблемы стояли перед компанией? Первоочередным спорным моментом разработанной модульной архитектуры были сами модули: для экономии транзисторного бюджета входящая в них пара «х86-ядер» зависит друг от друга, поскольку разделяет некоторые блоки. В частности, в первых реализациях единым был даже декодер команд и кэш инструкций. Второе слабое место - система памяти. На момент разработки первых процессоров сделать быстрый кэш второго уровня получалось, а вот L3 так и остался внешним по отношению к основной части процессора, так что работал асинхронно с ней и на более низких тактовых частотах. В итоге в старших конфигурациях процессоров семейства FX суммарная емкость L2 оказывалась равной L3, что вынуждало AMD продолжать использование эксклюзивной архитектуры кэш-памяти. Та прекрасно работала во времена одноядерных процессоров, но затрудняла обмен данными между вычислительными потоками в многоядерных, усложняя алгоритмы: если чего-то нет в L3, оно может быть в L2 одного из модулей, а может - только в памяти. И даже единый L2 на пару ядер, столь удобный у Core 2 Duo, для синхронизации использовать не выходило: наибольшую эффективность демонстрировал модуль, выполняющий всего один поток команд, т. е. загружать «вторые половинки» (на самом деле, меньшую их часть) работой имело смысл только при слишком большом ее количестве, но не на привычных для массовых нагрузок двух-четырех потоках.

А в APU бо́льшую часть кристалла занимало графическое ядро, так что эти модели остались вовсе без единой кэш-памяти, пусть даже медленной, поскольку иначе процессор получился бы слишком большим. Собственно, при использовании одинаковых норм производства APU по себестоимости конкурировали со старшими четырехъядерными моделями массовой линейки процессоров Intel, а старшие процессоры с четырьмя модулями оказывались еще более дорогими. Но при этом о конкуренции в плане производительности можно было говорить, только сравнивая четыре модуля AMD с четырьмя же ядрами Intel - масла в огонь подливал и всего один SIMD-блок на модуль. При этом процессоры Intel и сами по себе были дешевле в производстве, а из-за особенностей платформ стоили существенно меньше. APU же «воевали» только с совсем дешевыми двухъядерными процессорами Intel, да и это делали с переменным успехом. Конечно, они имели преимущество в производительности графической части, но далеко не всегда оно было востребовано.

Что меняется в новом поколении (как мы и обещали - простым языком, не вдаваясь в технические дебри)? «Базовый элемент» Zen чем-то напоминает двухмодульный процессор предыдущей архитектуры, но с существенными доработками. Во-первых, он включает не четыре попарно объединенных «х86-ядра», а четыре полноценных и независимых ядра - независимых даже в плане кэш-памяти второго уровня, суммарная емкость которой уменьшилась вдвое, зато теперь у каждого ядра появился свой L2 (и, разумеется, собственный декодер команд вместе с кэш-памятью инструкций). Во-вторых, кэш-память третьего уровня стала неотъемлемой составляющей такого вот «кирпичика». Судя по всему, работать она будет существенно быстрее, чем в предшественниках, а ее емкость составляет 8 МБ. В-третьих, что немаловажно, в AMD тоже сумели реализовать технологию симметричной многопоточности, так что каждое ядро может выполнять команды не одного, а двух потоков.

Фактически, как видите, в «базовом» варианте Zen сильно напоминает топовые процессоры Intel массовых серий, т. е. четырехъядерные Core i7. При этом такой «модуль» во второй половине следующего года будет использоваться и в APU, где сейчас всего-навсего, напомним, два модуля «старого образца», причем без кэш-памяти третьего уровня вообще. Графическое ядро, возможно, «не дотянется» до топовых решений Intel (тем более, снабженных кэш-памятью четвертого уровня - ничего подобного AMD пока не обещает), но будет производительнее массовой интегрированной графики Intel. Причем, судя по имеющимся данным о внутренней организации процессоров, компания сможет освоить и бюджетную модификацию с парой ядер и уменьшенным до 4 МБ L3, т. е. выпустить непосредственных конкурентов для разнообразных Core i3 и прочих двухъядерных процессоров (особенно мобильных). Сейчас соперничать с ними могут только двухмодульные (в терминологии AMD - «четырехъядерные») процессоры, а в будущем это будут делать и «обычные» двухъядерные.

Однако нельзя сказать, что компании полностью удалось достичь «паритета по ядрам». В частности, блоки для работы с числами с плавающей запятой и прочими SIMD-инструкциями изменились в меньшей степени, чем хотелось бы. Нормальной поддержки работы с векторами по 256 бит у них нет, т. е. на AVX2-коде ожидать высоких результатов не приходится. С другой стороны, на данный момент преждевременно утверждать о производительности хоть что-либо - новая микроархитектура дебютирует в готовых изделиях только в следующем году. Тогда-то и будет полная ясность с их тактовыми частотами, ценами, да и производительностью в реальных задачах. Пока же мы можем оценивать лишь планы AMD.

А в них нашлось место и любителям высокой процессорной производительности, поскольку вариантов компоновки готовых изделий будет как минимум два (а если учесть возможность выпуска двухъядерных моделей, которые легко найдут свое место в бюджетном сегменте, то и три): кроме APU, где, как уже было сказано выше, один четырехъядерный «модуль» Zen будет соседствовать с GPU, планируется также выпуск «чистых» CPU - с двумя модулями. То есть такие решения получат 8 ядер, способных выполнять одновременно 16 потоков вычисления и снабженных кэш-памятью третьего уровня емкостью 16 МБ. С L3 полной ясности нет - будет ли это единый объем, доступный всем ядрам «составного» процессора, или два отдельных блока (что присуще «склейкам»), но емкость будет именно такой. При этом топовые процессоры сохранят совместимость со все той же платформой АМ4, что является немаловажным конкурентным преимуществом перед процессорами Intel для LGA2011-3 и их последователями, с массовой линейкой механически несовместимыми. Да, разумеется, верным будет сказанное выше насчет производительности векторных инструкций, да и контроллер памяти у этих новых моделей останется двух-, а не четырехканальным, но последнее имеет и свои достоинства: платы будут дешевле. Причем это будут те же самые платы, что и для недорогих APU, т. е. давно ожидаемая единая платформа AMD, вероятно, сможет использоваться еще шире, чем Intel LGA115x. А если компании удастся еще и «зафиксировать» ее лет на пять (реализуя хотя бы совместимость «сверху вниз»), превратив в «долгожителя» класса АМ3 - тем лучше для многих потребителей.

Возникает, разумеется, закономерный вопрос: если все изменения настолько логичны и ожидаемы, то почему «ожидание» затянулось так надолго? Ведь, по-хорошему, такие устройства нужны еще «вчера», а компания планирует их поставки только «завтра». Проблема есть, но собственно разработки она не касается - только производства. Фактически, всё, что до последнего времени было доступно AMD - техпроцесс с нормами 32 нм, которого достаточно разве что для FX. В лучшем случае - достижение уровня Intel Sandy Bridge, которому тоже уже больше пяти лет. Последние модели APU, впрочем, используют нормы 28 нм, но это не намного лучше, чем 32 нм. Поэтому и в производстве запланирован «большой скачок» - переход на техпроцесс 14 нм. Переход совершится с некоторым отставанием от Intel (которая использует этот техпроцесс уже два года), но понятным и объяснимым. В общем, сделать такие процессоры без освоения новых норм производства было невозможно - а их освоение требует времени. Нам же хочется верить, что у AMD все получится.

Итого

Итак, что мы получим? Во-первых - наконец-то! - переход на единую платформу, чего не было пять лет. Причем и в этом случае можно говорить о «большом скачке»: АМ4 по планам должна быть универсальнее, чем Intel LGA115x. Во-вторых, существенное изменение микроархитектуры - с ростом производительности и общей эффективности основанных на ней процессоров. В-третьих, резкое улучшение норм производства, что хорошо и само по себе, и без чего такие изменения были бы невозможны. То есть, как видите, AMD планирует одним махом ликвидировать все недостатки сегодняшних массовых систем своего производства. Получится ли? Это покажет только практика - пока мы можем оценивать лишь планы и предварительную информацию. Впрочем, в каком-то виде платформа АМ4 уже существует, причем в своем ценовом сегменте имеет ряд преимуществ перед конкурирующими разработками. В основном они унаследованы у предшественников (это не удивительно - выпускаемые сейчас APU «новыми» назвать сложно), но с добавлением (хотя бы потенциально) модернизируемости и более длинного жизненного цикла. А окончательный ответ на вопрос, насколько удачным окажется переход, мы получим в следующем году. Хочется верить, что ответ будет положительным - так, как минимум, интереснее:)