Настройка интернет        25.11.2023   

Разработка урока и презентация на тему "кодирование текстовой информации". План-конспект урока "кодирование текстовой информации" Решение задач на кодирование графической информации

Открытый урок «Кодирование текстовой информации»

Предмет – информатика и ИКТ.

Класс – 9.

Форма проведения – создание проектов.

Цель : сформировать у обучающихся понимание процесса кодирования текстовой информации.

Задачи:

общеобразовательная:

    познакомить обучающихся со способами кодирования текстовой информации и их использовании;

    научить кодировать и перекодировать текстовую информацию;

развивающая:

    развивать умение планировать, организовывать и выполнять работу в группе, используя элементы проектирования;

    способствовать развитию познавательных интересов обучающихся;

воспитывающая:

    воспитывать доброжелательные отношения в группе;

    воспитывать творческое отношение к труду, к культуре труда, эстетический вкус при оформлении проекта.

Техническое оборудование:

    мультимедийный проектор;

    компьютерный класс с доступом в локальную сеть.

Раздаточный материал:

    название команд;

    информационный лист;

    ватман, фломастеры, клей, магниты;

    технологическая карта.

Ход урока

1. Организационный момент

Ученики стоят около ПК.

Здравствуйте, ребята!

Давайте сделаем глубокий вдох и выдохнем. А теперь улыбнемся друг другу.

Садитесь, пожалуйста на свои места.

У нас будет необычный урок. Мы будем работать над созданием проектов. Внимание на экран.

Запуск ролика (слайд 1 Приложение 1)

Как вы думаете, какова тема нашего урока?

тема урока (слайд 2 Приложение 1)

Итак, тема урока «Кодирование текстовой информации»

2. Введение в проект

Цели нашего урока:

    познакомиться с разными таблицами кодировок и научиться кодировать и декодировать текстовую информацию.

Что значит закодировать информацию?

Закодировать текст – значит сопоставить ему другой текст. Кодирование применяется при передаче данных – для того, чтобы зашифровать текст от посторонних, чтобы сделать передачу данных более надежной.

Скажите, а вы когда-нибудь кодировали информацию?

При кодировании заранее определяют алфавит, в котором записаны исходные тексты (исходный алфавит) и алфавит, в котором записаны закодированные тексты (коды), этот алфавит называется кодовым алфавитом.

    Для удобства алфавит представляют в виде кодовой таблицы.

способы кодирования (слайд 3 Приложение 1)

Существуют разные способы кодирования: графический, символьный, числовой.

- На сегодняшнем уроке мы познакомимся с приемами кодирования текста, которые были изобретены людьми на различных этапах развития человеческой мысли. И в аша задача выяснить, как исторически появились разные таблицы кодов.

ВЫКЛЮЧИТЬ ПРОЕКТОР

Для дальнейшей работы нам необходимо разбиться на 4 группы.

Для этого за экраном монитора найдите № группы.

Распределитесь по группам.

    конструкторы – 3 человека

    радисты – 2 человека

    исследователи – 3 человека

    историки – 3 человека

Спасибо.

У нас получилось 4 творческих группы.

Каждая группа будет выполнять проект на разные темы.

Исследователи поднимите руки, историки поднимите руки, радисты поднимите руки, конструкторы поднимите руки. Подойдите все к своим столам (Приложение 2).

Молодцы. Послушайте инструкцию:

У вас на столах технологическая карта (Приложение 3) (показать фиолетовый лист), информационный лист (Приложение 4) (показать зеленый лист), таблицы, схемы, и др (Приложение 5_1, (Приложение 5­_2, Приложение 5_3, Приложение 5_4) (показать белые листы).

А также ватман и принадлежности в коробочках.

Строго следуйте технологичной карте.

На создание проекта – 15 минут.

После работы – готовые проекты прикрепите к доске.

Приступаем к работе, я буду помогать!

3. Работа над проектом

Учитель помогает.

4. Защита проектов

Какой пример кодирования текстовой информации рассмотрели конструкторы?

в 1906 году в Берлине на Международной Радиотелеграфной Конвенции единым сигналом бедствия для радиосвязи на море был установлен сигнал (. . . - - - . . . SOS ) Спасите наши души. Я приглашаю - радистов.

Какие кодировки текста существуют и что они из себя представляют? Об этом нам расскажут исследователи.

У вас встречалась ситуация, когда вы получаете электронное письмо, но не можете его прочитать – вместо текста идут какие-то непонятные знаки? То же самое случается и в интернете – открываете страницу, а разобрать ничего не возможно. Причем заметьте, подобное происходит именно с русским текстом, с английским подобные проблемы маловероятны. Причина проблем – открытие файла в неверной кодировке.

Чтобы узнать, с чем это связано - Приглашаются историки

Молодцы, вы справились и представили свои проекты.

(Приложение 6 – фото с урока)

5. Подведение итогов

Подведем итог урока. Ответьте на следующие вопросы по материалу урока:

    Какие способы кодирования текста существуют? (графический, символьный, числовой)

    Назовите способы кодирования текста (Цезарь, Морзе)

    Что необходимо для кодирования текстовой информации на компьютере? (Кодовая таблица )

    Как называется международная кодовая таблица? (ASCII )

    Сколько существует кодировок русского языка? (Пять )

6. Рефлексия

Оценка вашего проекта - будет номинирована:

    Какой самый содержательный?

    Самый доступный?

    Самый красочный?

    Самый оригинальный?

Какие вы испытали трудности при выполнении проекта?

Мне понравились все ваши проекты.

7. Закрепление материала

А теперь применим наши знания на практике (Приложение 7):

Пройдите к ПК.

Работа с заданиями на сайте учителя

Кто заработал 3 балла?

Кто заработал 2 балла?

Кто заработал 1 балл?

Молодцы.

8. Домашнее задание

На сайте учителя есть задания в разделе тесты

Выполните их, а ответы отправьте мне на электронный адрес по вашему желанию (раздать задания)

Спасибо всем за работу. Наш урок был продуктивным. До свидания.

Методическая литература

    Информатика и информационные технологии. Учебник для 10-11 классов/Н.Д. Угринович. – М. БИНОМ. Лаборатория знаний, 2005. – 512 с.: ил.

    Практикум по информатике и информационным технологиям. Учебное пособие для общеобразовательных учреждений/Н.Д. Угринович, Л.Л. Босова, Н.И. Михайлова. – 3-е изд. – М. БИНОМ. Лаборатория знаний, 2005. – 394 с.: ил.

    Простейшие методы шифрования текста/ Д.М. Златопольский. – М.: Чистые пруды, 2007 – 32 с.

Интернет-ресурсы

    - персональный сайт учителя

Тема урока: « Кодирование текстовой информации».

Предмет: Информатика и ИКТ .

Класс: 9-10.

Ключевые слова : информатика, кодирование текста, кодирование информации.

Литература, эор.

1. Учебник Угринович Н.Д. Информатика и ИКТ базовый курс 9 класс;

Оборудование : компьютерный класс, программы Microsoft Office PowerPoint , задания к уроку в электронном виде (см. приложение).

Тип урока : Изучение новой темы .

Формы работы : фронтальная, коллективная, индивидуальная.

Аннотация: количество учащихся класс, подгруппа.

Цель урока: Дать представление о кодирование текстовой информации.

Задачи:

    Формирование представления о кодирование текстовой информации;

    Способствовать воспитанию чувств а коллективизма, умени я выслушивать ответы товарищей ;

    Развитие внимания и логического мышления;

    Развитие интереса к изучению компьютерных программ.

Ход урока:

Вводный рассказ учителя с помощью презентации (на эк ране представлена презентация по теме).

Начиная с 60-х годов, компьютеры все больше стали использовать для обработки текстовой информации и в настоящее время большая часть ПК в мире занято обработкой именно текстовой информации.

Для представления текстовой информации достаточно 256 знаков.
По формуле N = 2 I , 256= 2 8 следовательно, для кодирования одного символа используется количество информации равное 1 байту. (Особое внимание следует обратить на формулу).

Кодирование заключается в том, что каждому символу ставиться в соответствие уникальный двоичный код от 00000000 до 11111111 (или десятичный код от 0 до 255).

Важно, что присвоение символу конкретного кода – это вопрос соглашения, которое фиксируется кодовой таблицей.

Для разных типов ЭВМ используются различные кодировки.

С распространением IBM PC международным стандартом стала таблица кодировки ASCII ( American Standart Code for Information Interchange ) – Американский стандартный код для информационного обмена.

Стандартной в этой таблице является только первая половина, т.е. символы с номерами от 0 (00000000) до 127 (0111111). Сюда входят буква латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы.

Остальные 128 кодов используются в разных вариантах. В русских кодировках размещаются символы русского алфавита.

В настоящее время существует 5 разных кодовых таблиц для русских букв (КОИ8, СР1251 , СР866, Mac , ISO ).

В настоящее время получил широкое распространение новый международный стандарт Unicode , который отводит на каждый символ два байта. С его помощью можно закодировать 65536 (2 16 = 65536) различных символов.

Цифры кодируются по стандарту ASCII в двух случаях – при вводе-выводе и когда они встречаются в тексте. Если цифры участвуют в вычислениях, то осуществляется их преобразование в другой двоичных код.

Возьмем число 57 .

При использовании в тексте каждая цифра будет представлена своим кодом в соответствии с таблицей ASCII. В двоичной системе это – 0011010100110111.

При использовании в вычислениях, код этого числа будет получен по правилам перевода в двоичную систему и получим – 00111001.

Сегодня очень многие люди для подготовки писем, документов, статей, книг и пр. используют компьютерные текстовые редакторы . Компьютерные редакторы, в основном, работают с алфавитом размером 256 символов .

В этом случае легко подсчитать объем информации в тексте. Если 1 символ алфавита несет 1 байт информации , то надо просто сосчитать количество символов; полученное число даст информационный объем текста в байтах.

I = K × i , где

I -информационный объем сообщения

K - количество символов в тексте

i - информационный вес одного символа

2 i = N

N - мощность алфавита

Решение задач. Презентация построена по принципу «Решили с учителем - решили сами».

Подведение итогов. Выставление отметок. Домашнее задание.

Кодирование информации - процесс преобразования информации из формы, удобной для непосредственного использования, в форму, удобную для передачи, хранения или автоматической переработки.

Кодирование текстовой информации

Для записи текстовой (знаковой) информации всегда используется какой-либо язык (естественный или формальный).

Всё множество используемых в языке символов называется алфавитом . Полное число символов алфавита N называют его мощностью . При записи текста в каждой очередной позиции может появиться любой из N символов алфавита, т. е. может произойти N событий. Следовательно, каждый символ алфавита содержит i бит информации, где i определяется из неравенства (формула Хартли): 2 i N . Тогда общее количество информации в тексте определяется формулой:

V = k * i ,

где V – количество информации в тексте; k – число знаков в тексте (включая знаки препинания и даже пробелы), i - количество бит, выделенных на кодирование одного знака.

Так как каждый бит – это 0 или 1, то любой текст может быть представлен последовательностью нулей и единиц. Именно так текстовая информация хранится в памяти компьютера. Присвоение символу алфавита конкретного двоичного кода - это вопрос соглашения, зафиксированного в кодовой таблице. В настоящее время широкое распространение получили кодовые таблицы ASCII и Unicode .


ASCII (American Standart Code for Informational Interchange - Американский стандартный код информационного обмена) используется достаточно давно. Для хранения кода одного символа выделено 8 бит, следовательно, кодовая таблица поддерживает до 28 = 256 символов. Первая половина таблицы (128 символов) - управляющие символы, цифры и буквы латинского алфавита. Вторая половина отводится под символы национальных алфавитов. К сожалению, в настоящее время существует целых пять вариантов кодовых таблиц для русских букв (КОИ-8, Windows-1251, ISO, DOS, MAC), поэтому тексты созданные в одной кодировке неверно отображаются в другой. (Наверное, Вы встречали русскоязычные сайты, тексты которых выглядят как бессмысленный набор знаков?).

Unicode - получил распространение в последние годы. Для хранения кода одного символа выделено 16 бит, следовательно, кодовая таблица поддерживает до 216 = 65536 символов. Такого пространства достаточно, чтобы в одном стандарте объединить все "живые" официальные (государственные) письменности. Кстати, стандарт ASCII вошел в состав Unicode.

Если кодирование – это перевод информации с одного языка на другой (запись в другой системе символов, в другом алфавите), то декодирование – обратный перевод.

При кодировании один символ исходного сообщения может заменяться одним символом нового кода или несколькими символами, а может быть и наоборот – несколько символов исходного сообщения заменяются одним символом в новом коде (китайские иероглифы обозначают целые слова и понятия), поэтому кодирование может быть равномерное и неравномерное. При равномерном кодировании все символы кодируются кодами равной длины, при неравномерном кодировании разные символы могут кодироваться кодами разной длины, что затрудняет декодирование.

декодировать с начала , если выполняется условие Фано : никакое кодовое слово не является началом другого кодового слова. Закодированное сообщение можно однозначно декодировать с конца , если выполняется обратное условие Фано : никакое кодовое слово не является окончанием другого кодового слова. Условие Фано – это достаточное, но не необходимое условие однозначного декодирования.

Решение задач на кодирование текстовой информации

1.Автоматическое устройство осуществило перекодировку информационного сообщения на русском языке длиной в 20 символов, первоначально записанного в 2-байтном коде Unicode, в 8-битную кодировку КОИ-8. На сколько бит уменьшилась длина сообщения? В ответе запишите только число.

Решение:

1) при 16-битной кодировке объем сообщения – 16*20 бит

2) когда его перекодировали в 8-битный код, его объем стал равен– 8*20 бит

3) таким образом, сообщение уменьшилось на 16*20 – 8*20 = 8*20 = 160 бит

Ответ: 160

2. Определите информационный объем текста в битах

Бамбарбия! Кергуду!

Решение:

1) в этом тексте 19 символов (обязательно считать пробелы и знаки препинания)

2) если нет дополнительной информации, считаем, что используется 8-битная кодировка (чаще всего явно указано, что кодировка 8- или 16-битная), поэтому в сообщении 19*8 = 152 бита информации

Ответ: 152

3. В таблице ниже представлена часть кодовой таблицы ASCII:

Символ

Десятичный код

Шестнадцатеричный код

Каков шестнадцатеричный код символа «q»?


Решение:

1) в кодовой таблице ASCII все заглавные латинские буквы A-Z расставлены по алфавиту, начиная с символа с кодом 65=4116

2) все строчные латинские буквы a-z расставлены по алфавиту, начиная с символа с кодом 97=6116

3) отсюда следует, что разница кодов букв «q» и «a» равна разнице кодов букв «Q» и «A», то есть, 5116 – 4116=1016

4) тогда шестнадцатеричный код символа «q» равен коду буквы «a» плюс 1016

5) отсюда находим 6116 + 1016=7116.

Ответ: 71

4. Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А–00, Б–010, В–011, Г–101, Д–111. Можно ли сократить для одной из букв длину кодового слова так, чтобы код по-прежнему можно было декодировать однозначно? Коды остальных букв меняться не должны. Выберите правильный вариант ответа.

1) для буквы Б –это невозможно

3) для буквы В –для буквы Г – 01

Решение (1 способ - проверка условий Фано) :

3) для однозначного декодирования достаточно, чтобы выполнялось одно из условий Фано: прямое или обратное условие Фано;

4) проверяем последовательно варианты 1, 3 и 4; если ни один из них не подойдет, придется выбрать вариант 2 («это невозможно»);

3) проверяем вариант 1: А–00, Б–01, В–011, Г–101, Д–111.

«прямое» условие Фано не выполняется (код буквы Б совпадает с началом кода буквы В);

«обратное» условие Фано не выполняется (код буквы Б совпадает с окончанием кода буквы Г); поэтому этот вариант не подходит;

4) проверяем вариант 3: А–00, Б–010, В–01, Г–101, Д–111.

«прямое» условие Фано не выполняется (код буквы В совпадает с началом кода буквы Б);

«обратное» условие Фано не выполняется (код буквы В совпадает с окончанием кода буквы Г); поэтому этот вариант не подходит;

5) проверяем вариант 4: А–00, Б–010, В–011, Г–01, Д–111.

«прямое» условие Фано не выполняется (код буквы Г совпадает с началом кодов букв Б и В); но «обратное» условие Фано выполняется (код буквы Г не совпадает с окончанием кодов остальных буквы); поэтому этот вариант подходит;

Ответ : 4

Решение (2 способ, дерево) :

1) построим двоичное дерево, в котором от каждого узла отходит две ветки, соответствующие выбору следующей цифры кода – 0 или 1; разместим на этом дереве буквы А, Б, В, Г и Д так, чтобы их код получался как последовательность чисел на рёбрах, составляющих путь от корня до данной буквы (красным цветом выделен код буквы В – 011):

https://pandia.ru/text/78/419/images/image003_52.gif" width="391" height="166">DIV_ADBLOCK100">

3) но бит четности нам совсем не нужен , важно другое: пятый бит в каждой пятерке можно отбросить !

4) разобъем заданную последовательность на группы по 5 бит в каждой:

01010, 10010, 01111, 00011.

5) отбросим пятый (последний) бит в каждой группе:

0101, 1001, 0111, 0001.

это и есть двоичные коды передаваемых чисел:

01012 = 5, 10012 = 9, 01112 = 7, 00012 = 1.

6) таким образом, были переданы числа 5, 9, 7, 1 или число 5971.

Ответ: 2

Задачи для тренировки:

1) Автоматическое устройство осуществило перекодировку информационного сообщения на русском языке, первоначально записанного в 16-битном коде Unicode , в 8-битную кодировку
КОИ-8 . При этом информационное сообщение уменьшилось на 800 бит. Какова длина сообщения в символах?

2) В таблице ниже представлена часть кодовой таблицы ASCII:

Символ

Десятичный код

Шестнадцатеричный код

Каков шестнадцатеричный код символа «p» ?

3) Текстовый документ, состоящий из 3072 символов, хранился в 8-битной кодировке КОИ-8. Этот документ был преобразован в 16-битную кодировку Unicode. Укажите, какое дополнительное количество Кбайт потребуется для хранения документа. В ответе запишите только число.

4) Для кодирования букв А, Б, В, Г решили использовать двухразрядные последовательные двоичные числа (от 00 до 11 соответственно). Если таким способом закодировать последовательность символов ГБАВ и записать результат в шестнадцатеричной системе счисления, то получится:

5) Для 5 букв латинского алфавита заданы их двоичные коды (для некоторых букв - из двух бит, для некоторых - из трех). Эти коды представлены в таблице:

Определите, какой набор букв закодирован двоичной строкой

1) baade 2) badde 3) bacde 4) bacdb

6) Для кодирования букв А, В, С, D используются трехразрядные последовательные двоичные числа, начинающиеся с 1 (от 100 до 111 соответственно). Если таким способом закодировать последовательность символов CDAB и записать результат в шестнадцатеричном коде, то получится:

1) А5СD16 4) DE516

7) Для 6 букв латинского алфавита заданы их двоичные коды (для некоторых букв из двух бит, для некоторых – из трех). Эти коды представлены в таблице:

Определите, какая последовательность из 6 букв закодирована двоичной строкой.

8) Для кодирования сообщения, состоящего только из букв А, Б, В и Г, используется неравномерный по длине двоичный код:

Если таким способом закодировать последовательность символов ГАВБВГ и записать результат в шестнадцатеричном коде, то получится:

1) 62DD2) 6213316

9) Для передачи по каналу связи сообщения, состоящего только из букв А, Б, В, Г, решили использовать неравномерный по длине код: A=1, Б=01, В=001. Как нужно закодировать букву Г, чтобы длина кода была минимальной и допускалось однозначное разбиение кодированного сообщения на буквы?

10) Для передачи чисел по каналу с помехами используется код проверки четности. Каждая его цифра записывается в двоичном представлении, с добавлением ведущих нулей до длины 4, и к получившейся последовательности дописывается сумма её элементов по модулю 2 (например, если передаём 23, то получим последовательность). Определите, какое число передавалось по каналу в виде?

11) Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А–10, Б–11, В–000, Г–001, Д–011. Можно ли сократить для одной из букв длину кодового слова так, чтобы код по-прежнему можно было декодировать однозначно? Коды остальных букв меняться не должны. Выберите правильный вариант ответа.

1) это невозможно 2) для буквы Б – 1

3) для буквы Г –для буквы Д – 01

12) Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать двоичную последовательность, появляющуюся на приёмной стороне канала связи. Использовали код: А–111, Б–110, В–100, Г–101. Укажите, каким кодовым словом может быть закодирована буква Д. Код должен удовлетворять свойству однозначного декодирования. Если можно использовать более одного кодового слова, укажите кратчайшее из них.

13) Для передачи по каналу связи сообщения, состоящего только из букв А, Б, В, Г, решили использовать неравномерный по длине код: A=1, Б=000, В=001. Как нужно закодировать букву Г, чтобы длина кода была минимальной и допускалось однозначное разбиение кодированного сообщения на буквы?

Кодирование графической информации

Преобразование графической информации из аналоговой формы в дискретную производится путем дискретизации , т. е. разбиения непрерывного графического изображения на отдельные элементы. В процессе дискретизации производится кодирование, т. е. присвоение каждому элементу конкретного значения в форме кода.

Дискретизация это преобразование непрерывного изображения в набор дискретных значений в форме кода.

В процессе кодирования изображения производится пространственная дискретизация . Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики. Изображение разбивается на отдельные мелкие фрагменты (точки), каждому из которых присваивается код цвета.

В результате пространственной дискретизации графическая информация представляется в виде растрового изображения . Растровое изображение состоит из определённого количества строк, каждая из которых содержит определённое количество точек (пиксел).

Качество изображения зависит от разрешающей способности.

Разрешающая способность растрового изображения определяется количеством точек по горизонтали (X) и количеством точек по вертикали (Y ) на единицу длины изображения.

Чем меньше размер точки, тем больше разрешающая способность (больше строк растра и точек в строке) и, соответственно, выше качество изображения.
Величина разрешающей способности выражается в (dot per inch - точек на дюйм), т. е. в количестве точек в полоске изображения длиной в 1 дюйм (1дюйм = 2,54 см). Оцифровка графических изображений с бумаги или плёнок производится с помощью сканера. Сканирование производится путём перемещения светочувствительных элементов вдоль изображения. Характеристики сканера выражаются двумя числами, например 1200х2400 dpi. Первое число определяет количество светочувствительных элементов на одном дюйме полоски и является оптическим разрешением. Второе - является аппаратным разрешением и определяет количество микрошагов при перемещении на один дюйм вдоль изображения.

В процессе дискретизации могут использоваться различные палитр цветов. Каждый цвет можно рассматривать как возможное состояние точки. Количество цветов N в палитре и количество информации для кодирования цвета каждой точки связаны между собой известной формулой Хартли: N=2I, где I – глубина цвета, а N – количество цветов (палитра).

Количество информации, которое используется для кодирования цвета точки изображения, называется глубиной цвета. Наиболее распространёнными значениями глубины цвета являются значения из таблицы:

Таблица. Глубина цвета и количество отображаемых цветов.

Глубина цвета (i)

Количество изображаемых цветов (N)

Качество изображения на экране монитора зависит от величины пространственного разрешения и глубины цвета. Пространственное разрешение экрана монитора определяется как произведение количества строк изображения на количество точек в строке. Разрешение может быть: 800х600, 1024х768, 1152х864 и выше. Количество отображаемых цветов может изменяться от 256 цветов до более чем 16 миллионов.

Видеопамять

№ точки

Двоичный код цвета точки

.........................................................................................

..........................................................................................

Рис. Формирование растрового изображения на экране.

Рассмотрим пример формирования на экране монитора растрового изображения, состоящего из 600 строк по 800 точек в каждой строке (всего точек) и глубиной цвета 8 битов. Двоичный код цвета всех точек хранится в видеопамяти компьютера, которая находится на видеокарте.

Периодически, с определённой частотой, коды цветов точек считываются из видеопамяти и точки отображаются на экране монитора. Частота считывания изображения влияет на стабильность изображения на экране. В современных мониторах обновление изображения происходит с частотой 75 и более раз в секунду, что обеспечивает комфортность восприятия пользователем.

Информационный объём требуемой видеопамяти можно рассчитать по формуле:

V =I · X · Y,

где V - информационный объём видеопамяти в битах;
X · Y - количество точек изображения (разрешение экрана);
I - глубина цвета в битах на точку.

Например, необходимый объём видеопамяти для графического режима с разрешением 800х600 точек и глубиной цвета 24 бита равен:

V =I · X · Y= 24 х 800 х 600 =бит = 1 байт.

Цветное изображение на экране монитора формируется за счет смешивания базовых цветов: красного, зеленого и синего (палитра RGB). Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности. Например, при глубине цвета в 24 бита на каждый из цветов, выделяется по 8 бит, т. е. для каждого из цветов возможны N=28=256 уровней интенсивности, заданные двоичными кодами от минимального до максимального.

Таблица. Формирование некоторых цветов при глубине цвета 24 бита.

Название

Интенсивность

Часто цвет записывается в виде - #RRGGBB, где RR – шестнадцатеричный код красной цветовой компоненты, GG - шестнадцатеричный код зеленой цветовой компоненты, BB - шестнадцатеричный код синей цветовой компоненты. Чем больше значение компоненты, тем больше интенсивность свечения соответствующего базового цвета. 00 – отсутствие свечения, FF – максимальное свечение (FF16=25510), 8016 – среднее значение яркости. Если компонента имеет интенсивность цвета <8016 , то это даст темный оттенок, а если >=8016 , то светлый.

Например,

#FF0000 – красный цвет (красная составляющая максимальная, а остальные равны нулю)

#000000 – черный цвет (ни одна компонента не светится)

#FFFFFF – белый цвет (все составляющие максимальны и одинаковы, наиболее яркий цвет)

#404040 – темно-серый цвет (все составляющие одинаковы и значения меньше среднего значения яркости)

#8080FF – светло-синий (максимальная яркость у синий составляющей, а яркости других компонент одинаковые и равны 8016).

Решение задач на кодирование графической информации

1. Для хранения растрового изображения размером 32×32 пикселя отвели 512 байтов памяти. Каково максимально возможное число цветов в палитре изображения?

Решение: При кодировании с палитрой количество бит на 1 пиксель (K ) зависит от количества цветов в палитре N , они связаны формулой: https://pandia.ru/text/78/419/images/image005_31.gif" width="71" height="21 src="> (2), где – число бит на пиксель, а – общее количество пикселей.

1) находим общее количество пикселей https://pandia.ru/text/78/419/images/image009_17.gif" width="61" height="19">байтбайтбитбит

3) определяем количество бит на пиксель: #ХХХХХХ", где в кавычках задаются шестнадцатеричные значения интенсивности цветовых компонент в 24-битной RGB-модели.

К какому цвету будет близок цвет страницы, заданный тэгом ?

1) белый 2) серый 3)желтый 4) фиолетовый

Решение: Самая высокая интенсивность цвета (99) у составляющих красного и синего цветов. Это дает фиолетовый цвет.

Ответ: 4

3. Какова ширина (в пикселях) прямоугольного 64-цветного неупакованного растрового изображения, занимающего на диске 1,5 Мбайт, если его высота вдвое меньше ширины?

Решение: Так как объем памяти на все изображение вычисляется по формуле (1), где – число бит на пиксель, а https://pandia.ru/text/78/419/images/image014_12.gif" width="36" height="41 src=">.

64=26 . Отсюда K = 6.

Подставим эти значения в формулу (1), получим:

*6=1.5*220*23. После сокращения: x 2 = 222. Отсюда: x = 211=2048.

О твет: 4

Задачи для тренировки:

1. Для хранения растрового изображения размером 128 x 128 пикселей отвели 4 килобайта памяти. Каково максимально возможное число цветов в палитре изображения?

2. Для кодирования цвета фона страницы Интернет используется атрибут bgcolor="#ХХХХХХ", где в кавычках задаются шестнадцатеричные значения интенсивности цветовых компонент в 24-битной RGB-модели. К какому цвету будет близок цвет страницы, заданной тэгом ?

1) желтый 2) розовый 3) светло-зеленый 4) светло-синий

3. Какова ширина (в пикселях) прямоугольного 16-цветного неупакованного растрового изображения, занимающего на диске 1 Мбайт, если его высота вдвое больше ширины?

Кодирование звуковой информации

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче, чем больше частота, тем выше тон. Для того, чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. При этом звуковая волна разбивается на мелкие временные участки, для каждого из которых устанавливается значение амплитуды.

Временная дискретизация – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.

На графике (см. рис.) это выглядит как замена гладкой кривой на последовательность ”ступенек”, каждой из которых присваивается значение уровня громкости. Чем большее количество уровней громкости будет выделено в процессе кодирования, тем более качественным будет звучание.

Рис. Временная дискретизация звука

Глубина звука (глубина кодирования) - количество бит на кодировку звука.

Уровни громкости (уровни сигнала) - звук может иметь различные уровни громкости. Количество различных уровней громкости рассчитываем по формуле Хартли: N = 2 I где I – глубина звука, а N – уровни громкости .

Современные звуковые карты обеспечивают 16-битную глубину кодировки звука. Количество различных уровней сигнала можно рассчитать по формуле: N=216=65536. Т. о., современные звуковые карты обеспечивают кодирование 65536 уровней сигнала. Каждому значению амплитуды присваивается 16-ти битный код.

При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, т. е. частотой дискретизации. Чем большее количество измерений проводится в 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

Частота дискретизации количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц).

1 измерение за 1 секунду -1 ГЦ, 1000 измерений за 1 секунду 1 кГц.

Обозначим частоту дискретизации буквой F . Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц .

Качество двоичного кодирования звука определяется глубиной кодирования и частотой дискретизации.

Частота дискретизации аналогового звукового сигнала может принимать значения от 8 кГц до 48 кГц. При частоте 8 кГц качество дискретизованного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц – качеству звучания аудио-CD. Следует также учитывать, что возможны как моно-, так и стереорежимы.

Аудиоадаптер (звуковая плата) – устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код при вводе звука и обратно (из числового кода в электрические колебания) при воспроизведении звука.

Характеристики аудиоадаптера: частота дискретизации и разрядность регистра.

Разрядность регистра - число бит в регистре аудиоадаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I , то при измерении входного сигнала может быть получено 2 I = N различных значений.

Размер цифрового моноаудиофайла (A ) измеряется по формуле:

A =F* T * I /8 ,

где F – частота дискретизации (Гц), T – время звучания или записи звука, I разрядность регистра (разрешение). По этой формуле размер измеряется в байтах.

Размер цифрового стереоаудиофайла (A ) измеряется по формуле:

A =2* F * T * I /8 ,

сигнал записан для двух колонок, так как раздельно кодируются левый и правый каналы звучания.

Пример. Попробуем оценить информационный объем стереоаудиофайла длительностью звучания 1 секунда при высоком качестве звука (16 бит, 48 кГц). Для этого количество битов нужно умножить на количество выборок в 1 секунду и умножить на 2 (стерео):

16 бит*48 000 *2 = 1 536 000 бит = 192 000 байт = 187,5 Кбайт

В таблице1 показано, сколько Мб будет занимать закодированная одна минута звуковой информации при разной частоте дискретизации:

Тип сигнала

Частота дискретизация, КГц

16 бит, стерео

16 бит, моно

8 бит, моно

Примеры задач:

1. Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен.

Решение:

Формула для расчета размера (в байтах) цифрового аудио-файла: A = F * T * I /8.

Для перевода в байты полученную величину надо разделить на 8 бит.

22,05 кГц =22,05 * 1000 Гц =22050 Гц

A = F * T * I /8 = 22050 х 10 х 8 / 8 = 220500 байт.

Ответ: 220500

2. В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность?

Решение:

Формула для расчета частоты дискретизации и разрядности: F* I =А/Т

(объем памяти в байтах) : (время звучания в секундах):

2, 6 Мбайт= 26 байт

F* I =А/Т= 26 байт: 60 = 45438,3 байт

F=45438,3 байт: I

Разрядность адаптера может быть 8 или 16 бит. (1 байт или 2 байта). Поэтому частота дискретизации может быть либо 45438,3 Гц = 45,4 кГц ≈ 44,1 кГц –стандартная характерная частота дискретизации, либо 22719,15 Гц = 22,7 кГц ≈ 22,05 кГц - стандартная характерная частота дискретизации

Ответ:

Частота дискретизации

Разрядность аудиоадаптера

1 вариант

2 вариант

3. Объем свободной памяти на диске - 5,25 Мб, разрядность звуковой платы - 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц?

Решение:

Формула для расчета длительности звучания: T=A/F/I

(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах):

5,25 Мбайт = 5505024 байт

5505024 байт: 22050 Гц: 2 байта = 124,8 сек
Ответ: 124,8

4. Вычислить, сколько байт информации занимает на компакт-диске одна секунда стереозаписи (частота 44032 Гц, 16 бит на значение). Сколько занимает одна минута? Какова максимальная емкость диска (считая максимальную длительность равной 80 минутам)?

Решение:

Формула для расчета объема памяти A = F * T * I :
(время записи в секундах) * (разрядность звуковой платы в байтах) * (частота дискретизации). 16 бит -2 байта.
1) 1с х 2 х 44032 Гц = 88064 байт (1 секунда стереозаписи на компакт-диске)
2) 60с х 2 х 44032 Гц = 5283840 байт (1 минута стереозаписи на компакт-диске)
3) 4800с х 2 х 44032 Гц = байт=412800 Кбайт=403,125 Мбайт (80 минут)

Ответ: 88064 байт (1 секунда), 5283840 байт (1 минута), 403,125 Мбайт (80 минут)

Задачи для тренировки:

1) Производится одноканальная (моно) звукозапись с частотой дискретизации 22 кГц и глубиной кодирования 16 бит. Запись длится 2 минуты, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

2) Производится двухканальная (стерео) звукозапись с частотой дискретизации 48 кГц и глубиной кодирования 24 бита. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

3) Проводилась одноканальная (моно) звукозапись с частотой дискретизации 16 кГц и 24-битным разрешением. В результате был получен файл размером 3 Мбайт, сжатие данных не производилось. Какая из приведенных ниже величин наиболее близка к времени, в течение которого проводилась запись?

1) 30 сексексексек

4) Производится одноканальная (моно) звукозапись с частотой дискретизации 128 Гц. При записи использовались 64 уровня дискретизации. Запись длится 6 минут 24 секунд, её результаты записываются в файл, причём каждый сигнал кодируется минимально возможным и одинаковым количеством битов. Какое из приведённых ниже чисел наиболее близко к размеру полученного файла, выраженному в килобайтах?

5) Производится двухканальная (стерео) звукозапись с частотой дискретизации 16 кГц и глубиной кодирования 32 бит. Запись длится 12 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

Конспект урока по теме

«Кодирование текстовой информации»

Цели: Создание условий для изучения темы кодирование текстовой информации.

Задачи:


  • Образовательные: Способствовать запоминанию основной терминологии, формированию представления о кодировании текстовой информации. Формированию умения работать с текстом. Создать условия для расширения и углубления знаний об истории развития кодирования. Способствовать развитию навыков работы в текстовом процессоре.

  • Воспитательные: Воспитывать интерес к изучаемому предмету; бережное отношение к своему здоровью и здоровью окружающих. Участвовать в формировании позитивного общения «учитель-ученик», «ученик-ученик».

  • Развивающие: Способствовать владению понятиями и их толкованиям; развитию умения анализировать, выделять главное, обобщать, предметно-речевых навыков говорить, слушать; совершенствовать умение школьников заполнять таблицы. Создавать условия для развития психологических особенностей у учащихся: памяти, мышления, внимания.
Оборудование: Мультимедийный проектор, экран, интерактивная доска, индивидуальный раздаточный материал, презентация.

Ход урока.

1. Актуализация знаний.

Звучит музыка из кинофильма «Шерлок Холмс». Учитель читает рассказ: «На лестнице раздались тяжелые шаги, и через минуту к нам вошел высокий румяный, чисто выбритый джентльмен. Он уже собирался усесться, как вдруг взор его упал на листок с забавными значками, который я только что рассматривал и оставил на столе.

Что вы об этом думаете, мистер Холмс? – воскликнул он. – Мне рассказывали, что вы большой любитель всяких таинственных случаев. Я вам заранее выслала эту бумажку, чтобы у вас было время изучить ее до моего приезда.

Холм приподнял бумажку, и лучи солнца озарили ее. Это был листок, вырванный из записной книжки. На нем были начертаны карандашом вот такие знаки:

^ 209 236 229 245 ^ - 253 242 238^ ^241 238 235 237 246 229^

Холмс внимательно рассмотрел листок.

Это дело обещает много любопытного и необычайного, - сказал он».

Здравствуйте. Сегодня у нас с вами урок познания тайн. Вы познакомитесь со мной учителем информатики школы №12, меня зовут Алла Владимировна, я с вами. И я надеюсь, что познание этих тайн будет приятным для нас всех. Для того чтобы наш урок принес нам только положительные эмоции, давайте договоримся, что общаться будем при помощи правила поднятой руки.

Как вы думаете, о чем мы будем говорить на уроке? Сформулируйте тему нашего урока? Кодирование или шифрование чего?

Учитель выслушивает варианты и обобщает полученные ответы и сообщает тему урока – «Кодирование текстовой информации».

Как вы думаете, почему мы изучаем эту тему на уроке информатики? Где и для чего используется кодирование информации?

Что вы хотели бы узнать о кодировании текстовой информации?

Как вы думаете, с чего мы должны начать урок?

Вы знаете, что такое кодирование, текстовая информация?

План: 1. Определение понятий.

2. История развития кодирования.

3. Кодировки или как кодируются тексты сейчас.

2. Первичное освоение материала.

Для того чтобы мы понимали сегодня друг друга на уроке и говорили с вами на одном я зыке, мы должны познакомиться с основными понятиями данной темы. У вас на столах есть папка с рабочими листами, сейчас вам понадобиться лист №1. На нем вы видите словарик с терминами, я дам вам 2 минуты внимательно познакомиться с этими терминами. Время пошла, приступаем к работе.

Время для работы истекло. Давайте проверим, как вы усвоили эти понятия. На доске написаны слова и их определения, совместите пожалуйста и получите терминологический словарь.

Мы готовы к познанию тайн, и для этого я предлагаю совершить путешествие на машине времени.

История кодирования насчитывает около 4 тысяч лет. Её можно условно разделить на два периода, в зависимости от того, какие появлялись шифры.

Наша машина времени остановилась в древнем Риме, где был создан один из самых первых известных шифров, который носит имя римского императора Юлия Цезаря (I век до н. э.). Кто знает шифр Цезаря?

Давайте я вам расскажу о нем: суть этого шифра в следующем: каждая буква исходного алфавита заменяется третьей после нее буквой в алфавите, который считает написанным по кругу, т. е. после буквы «Я» следует буква «А». Например, закодируем при помощи шифра Цезаря слово «код» при кодировании шифром Цезаря преобразуется – «нсж». (Учитель на интерактивной доске двигает буквы и дети хором ему помогают).

Теперь я предлагаю вам выполнить задание самим. Переведем слово «Зрение», используя код Цезаря. Один человек выполняет задание у доски, другие в рабочих листах №2.

А теперь давайте расшифруем слово, записанное при помощи шифра Цезаря «НСПТЯБХЗУ». Выполняем в рабочих листах задание №2.

Ответ: «Компьютер».

Как вы думаете, почему я кодировала именно эти слова?

Как работа за компьютером влияет на зрение человека? Можно ли уменьшить это вредное воздействие? Может быть, кто-то знает как?

Сегодня на уроке мы познакомимся с некоторыми способами, позволяющими ослабить это вредное воздействие. Вот первый способ – это упражнения для глаз.

Физкультминутка:

1. Не поворачивая головы, посмотрите «вправо – вверх – влево - вниз», а затем вдаль будем выполнять это упражнение под счет от 1 до 6. Проделать тоже, но «влево – вверх – вправо - вниз» и снова посмотреть вдаль.

2. Возьмите в руки карандаш или ручку. Расположите карандаш на расстоянии вытянутой руки от кончика носа. Приближайте карандаш к носу и следите за ним глазами и возвращайте его в исходное положение. Повторим 3 раза.

3. Положите кончики пальцев на виски, слегка сжав их. 10 раз быстро и легко моргните. Закройте глаза и отдохните, сделав 2-3 глубоких вдоха и выдоха.

Наши глазки отдохнули и мы продолжаем наш урок, а тем временем наша машина времени остановилась в 19 веке.

Нас встречает странный звук. Как вы думаете, что этот звук значит?

Вы правы, это азбука Морзе. Именно с её изобретением связан второй этап развития кодирования текстовой информации. Самюэль Финли Морзе – американский изобретатель и художник, его называли «американским Леонардо да Винчи»

Таблица, при помощи которой записана азбука Морзе, называется кодовая таблица.

Посмотрите внимательно на кодовую таблицу азбуки Морзе. Скажите, какие символы используются при кодировании букв в этой таблице?

Сколько различных символов используется при кодировании?

Как вы думаете, как называется такое кодирование символов?

Такое кодирование называется двоичным, т. е. кодирование, в котором используется алфавит из двух символов «.» и «-«.

3. Осознание и осмысление учебной информации.

Как вы думаете, почему мы остановились именно на двоичном кодировании текстовой информации?

Наша машина времени сообщает нам о том, что пора возвращаться домой в 21 век. Действительно, текстовая информация в современных компьютерах записывается при помощи двоичного кода. Посмотрите на экран вы наверняка не догадывались, что нажимая букву на клавиатуре компьютер, а точнее процессор кодирует ее двоичным кодом, затем перекодирует ее обратно и только после этого вы видите изображение буквы на экране монитора.

4. Первичное закрепление учебного материала.

Сегодня мы с вами познакомимся с одной из кодировок, которая используется для кодирования текстовой информации и в частности для кодирования русского алфавита. У вас на столах есть рабочий лист №3. Возьмите его, прочитайте информацию и ответьте в рабочих листах на вопросы №3 -5.

Время для работы истекло, давайте проверим, что у вас получилось.

Как называется международная таблица кодировки символов? (ASCII) Что эти буквы означают?

Из каких двух частей состоит эта кодовая таблица? (В системе ASCII закреплены две таблицы кодирования – базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255).

Заполним таблицу:

Перейдем к работе за компьютером. Я предлагаю вам разгадать рецепт витаминного салата. Для этого открой те на рабочем столе компьютера папку «Кодирование информации» и документ «Салат».

На листе вы видите салатницу, в которой вместо ингредиентов находятся их коды, записанные в кодировке ASCII. Определите ингредиенты салата, поставив на место кода соответствующую картинку.

Чтобы развитие дистрофии сетчатки глаза не наступило, в рационе каждого человека должны быть продукты, в которых содержится большое количество бета-каротина, витамина С, Е, лютеина, цинка и омега-3 жира. Можно сделать салат из перца и свеклы – это блюдо еще и очень вкусное, особенно, если приправить его оливковым маслом, или соком цитрусовых. Между прочим туда можно добавить и морковь.

5. Рефлексия (подведение итогов урока).

Вы помните, что сегодня у нас урок познания тайн. Все ли тайны мы сегодня разгадали?

Давайте вернемся к началу урока.

Мы можем разгадать эту тайну сейчас. Какой кодировкой вы пользовались при этом?

«Смех – это солнце: оно прогоняет зиму с человеческого лица» Виктор Гюго. Сейчас на улице зима, недавно были очень сильные морозы, если вы будете улыбаться друг другу, то любая погода вам будет в радость.

Как вы думаете, что еще можно закодировать? Вы когда-нибудь пользовались кодированием в жизни? При помощи написания смс сообщений?

Оказывается, что кроме текста можно закодировать еще и эмоции. При помощи смайликов, которые изображены на доске.

Чтобы оценить наше сотрудничество, я предлагаю вам закодировать свое настроение: в начале урока и в конце урока. Если примеры смайликов с презентации не отразили ваше настроение, можете придумать свои. Спасибо за сотрудничество.

6. Домашнее задание: придумайте своё кодирование русского алфавита и представьте кодировку в форме кодовой таблицы.

Текстовая информация состоит из символов: букв, цифр, знаков препинания и др. Одного байта достаточно для хранения 256 различных значений, что позволяет размещать в нем любой из алфавитно-цифровых символов. Первые 128 символов (занимающие семь младших бит) стандартизированы с помощью кодировки ASCII (American Standart Code for Information Interchange). Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255. Для кодировки русских букв используют различные кодовые таблицы (КОI-8R, СР1251, CP10007, ISO-8859-5):

KOI8 R - восьмибитовый стандарт кодирования букв кириллических алфавитов (для операционной системы UNIX). Разработчики KOI8 R поместили символы русского алфавита в верхней части расширенной таблицы ASCII таким образом, что позиции кириллических символов соответствуют их фонетическим аналогам в английском алфавите в нижней части таблицы. Это означает, что из текста написанного в KOI8 R , получается текст, написанный латинскими символами. Например, слова «дом высокий» приобретают форму «dom vysokiy»;

СР1251 – восьмибитовый стандарт кодирования, используемый в OS Windows;

CP10007 - восьмибитовый стандарт кодирования, используемый в кириллице операционной системы Macintosh (компьютеров фирмы Apple);

ISO -8859-5 – восьмибитовый код, утвержденный в качестве стандарта для кодирования русского языка.

Кодирование графической информации

Графическую информацию можно представлять в двух формах: аналоговой и дискретной . Живописное полотно , созданное художником, - это пример аналогового представления , а изображение, напечатанное при помощи принтера , состоящее из отдельных (элементов) точек разного цвета, - это дискретное представление .

Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в дискретную. При этом производится кодирование - присвоение каждому элементу графического изображения конкретного значения в форме кода. Создание и хранение графических объектов возможно в нескольких видах - в виде векторного , фрактального или растрового изображения. Отдельным предметом считается 3D (трехмерная) графика , в которой сочетаются векторный и растровый способы формирования изображений.

Векторная графика используется для представления таких графических изображений как рисунки, чертежи, схемы.

Они формируются из объектов - набора геометрических примитивов (точки, линии, окружности, прямоугольники), которым присваиваются некоторые характеристики, например, толщина линий, цвет заполнения.

Изображение в векторном формате упрощает процесс редактирования, так как изображение может без потерь масштабироваться, поворачиваться, деформироваться. При этом каждое преобразование уничтожает старое изображение (или фрагмент), и вместо него строится новое. Такой способ представления хорош для схем и деловой графики. При кодировании векторного изображения хранится не само изображение объекта, а координаты точек, используя которые программа каждый раз воссоздает изображение заново.

Основным недостатком векторной графики является невозможность изображения фотографического качества . В векторном формате изображение всегда будет выглядеть, как рисунок.

Растровая графика. Любую картинку можно разбить на квадраты, получая, таким образом, растр - двумерный массив квадратов. Сами квадраты - элементы растра или пиксели (picture"s element) - элементы картинки. Цвет каждого пикселя кодируется числом, что позволяет для описания картинки задавать порядок номеров цветов (слева направо или сверху вниз). В память записывается номер каждой ячейки, в которой хранится пиксель.

Рисунок в растровом формате

Каждому пикселю сопоставляются значения яркости, цвета, и прозрачности или комбинация этих значений. Растровый образ имеет некоторое число строк и столбцов. Этот способ хранения имеет свои недостатки: больший объём памяти, необходимый для работы с изображениями.

Объем растрового изображения определяется умножением количества пикселей на информационный объем одной точки, который зависит от количества возможных цветов. В современных компьютерах в основном используют следующие разрешающие способности экрана: 640 на 480, 800 на 600, 1024 на 768 и 1280 на 1024 точки. Яркость каждой точки и ее координаты можно выразить с помощью целых чисел, что позволяет использовать двоичный код для того чтобы обрабатывать графические данные.

В простейшем случае (черно-белое изображение без градаций серого цвета) каждая точка экрана может иметь одно из двух состояний - «черная» или «белая», то есть для хранения ее состояния необходим 1 бит. Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки, хранящимся в видеопамяти. Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемым для кодирования цвета точки. Наиболее распространенными значениями глубины цвета являются 8, 16, 24, 32, 64 бита.

Для кодирования цветных графических изображений произвольный цвет делят на его составляющие. Используются следующие системы кодирования:

HSB (H - оттенок (hue), S - насыщенность (saturation), B - яркость (brightness)),

RGB (Red - красный , Green - зелёный , Blue - синий ) и

CMYK (C yan - голубой, Magenta – пурпурный, Yellow - желтый и Black – черный).

Первая система удобна для человека , вторая - для компьютерной обработки , а последняя - для типографий . Использование этих цветовых систем связано с тем, что световой поток может формироваться излучениями, представляющими собой комбинацию "чистых" спектральных цветов: красного, зеленого, синего или их производных.

Фрактал – это объект, отдельные элементы которого наследуют свойства родительских структур. Поскольку более детальное описание элементов меньшего масштаба происходит по простому алгоритму, описать такой объект можно всего лишь несколькими математическими уравнениями. Фракталы позволяют описывать изображения, для детального представления которых требуется относительно мало памяти.

Рисунок в фрактальном формате

Трёхмерная графика (3 D ) оперирует с объектами в трёхмерном пространстве. Трёхмерная компьютерная графика широко используется в кино, компьютерных играх, где все объекты представляются как набор поверхностей или частиц. Всеми визуальными преобразованиями в 3D-графике управляют с помощью операторов, имеющих матричное представление .

Кодирование звуковой информации

Музыка, как и любой звук, является не чем иным, как звуковыми колебаниями, зарегистрировав которые, её можно достаточно точно воспроизвести. Для представления звукового сигнала в памяти компьютера, необходимо поступившие акустические колебания представить в цифровом виде, то есть преобразовать в последовательность нулей и единиц. С помощью микрофона звук преобразуется в электрические колебания, после чего можно измерить амплитуду колебаний через равные промежутки времени (несколько десятков тысяч раз в секунду), используя специальное устройство - аналого-цифровой преобразователь (АЦП ). Для воспроизведения звука цифровой сигнал необходимо превратить в аналоговый с помощью цифро-аналогового преобразователя (ЦАП ). Оба эти устройства встроены в звуковую карту компьютера. Указанная последовательность превращений представлена на рис. 2.6..

Трансформация аналогового сигнала в цифровой и обратно

Каждое измерение звука записывается в двоичном коде. Этот процесс называется дискретизацией (семплированием), выполняемым с помощью АЦП.

Семпл (sample англ. образец) - это промежуток времени между двумя измерениями амплитуды аналогового сигнала. Кроме промежутка времени семплом называют также любую последовательность цифровых данных, которые получили путем аналого-цифрового преобразования. Важным параметром семплирования является частота - количество измерений амплитуды аналогового сигнала в секунду. Диапазон частоты дискретизации звука от 8000 до 48000 измерений за одну секунду.

Графическое представление процесса дискретизации

На качество воспроизведения влияют частота дискретизации и разрешение (размер ячейки, отведённой под запись значения амплитуды). Например, при записи музыки на компакт-диски используются 16-разрядные значения и частота дискретизации 44032 Гц.

На слух человек воспринимает звуковые волны, имеющие частоту в пределах от 16 Гц до 20 кГц (1 Гц - 1 колебание в секунду).

В формате компакт-дисков Audio DVD за одну секунду сигнал измеряется 96 000 раз, т.е. применяют частоту семплирования 96 кГц. Для экономии места на жестком диске в мультимедийных приложениях довольно часто применяют меньшие частоты: 11, 22, 32 кГц. Это приводит к уменьшению слышимого диапазона частот, а, значит, происходит искажение того, что слышно.